963 resultados para Equações diferenciais não-lineares - Soluções numericas


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our purpose is to show the effects in the predator-prey trajectories due to parameter temporal perturbations and/or inclusion of capacitive terms in the Lotka Volterra Model. An introduction to the Lotka Volterra Model (chapter 2) required a brief review of nonlinear differential equations and stability analysis (chapter 1) , for a better understanding of our work. In the following chapters we display in sequence our results and discussion for the randomic pertubation case (chapter 3); periodic perturbation (chapter 4) and inclusion of capacitive terms (chapter 5). Finally (chapter 6) we synthesize our result

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The friction phenomena is present in mechanical systems with two surfaces that are in contact, which can cause serious damage to structures. Your understanding in many dynamic problems became the target of research due to its nonlinear behavior. It is necessary to know and thoroughly study each existing friction model found in the literature and nonlinear methods to define what will be the most appropriate to the problem in question. One of the most famous friction model is the Coulomb Friction, which is considered in the studied problems in the French research center Laboratoire de Mécanique des Structures et des Systèmes Couplés (LMSSC), where this search began. Regarding the resolution methods, the Harmonic Balance Method is generally used. To expand the knowledge about the friction models and the nonlinear methods, a study was carried out to identify and study potential methodologies that can be applied in the existing research lines in LMSSC and then obtain better final results. The identified friction models are divided into static and dynamic. Static models can be Classical Models, Karnopp Model and Armstrong Model. The dynamic models are Dahl Model, Bliman and Sorine Model and LuGre Model. Concerning about nonlinear methods, we study the Temporal Methods and Approximate Methods. The friction models analyzed with the help of Matlab software are verified from studies in the literature demonstrating the effectiveness of the developed programming

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os compostos orgânicos voláteis constituem uma fonte vulgar de contaminação da água subterrânea, a qual pode ser eliminada pela tecnologia do arrastamento por ar (air stripping) em colunas com enchimento desordenado e utilizando fluxos das fases em contra-corrente. Propõe-se neste trabalho uma nova metodologia de dimensionamento destas colunas, para qualquer tipo de enchimento e de contaminante, onde não há necessidade de se arbitrar nenhum diâmetro, onde se evita o recurso a ábacos experimentais e onde o regime hidráulico conveniente é seleccionado à partida. O procedimento proposto foi algoritmizado e convertido num programa em linguagem C++. Para verificar e testar não só o dimensionamento mas também o comportamento teórico estacionário e dinâmico construiu-se de raiz uma coluna experimental. Seleccionou-se como contaminante uma solução de clorofórmio em água destilada. A experimentação permite, ainda, corrigir o coeficiente de transferência de massa global teórico estimado pelas correlações de Onda e que depende de inúmeros parâmetros nem sempre controláveis experimentalmente. Apresenta-se, em seguida, um modelo original de simulação dinâmica do comportamento da coluna e que é constituído por um sistema de equações diferenciais não lineares (parâmetros distribuidos). No entanto, se os débitos forem arbitrados como constantes, o sistema passa a ser linear apesar de não possuir solução analítica evidente (p.e. por transformações integrais). A discretização por diferenças finitas permitiu superar estas dificuldades. Existe uma notável concordância entre os valores experimentais e os previstos no modelo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Matemática - IBILCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Matemática - IBILCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A paralelização de métodos de resolução de sistemas de equações lineares e não lineares é uma atividade que tem concentrado várias pesquisas nos últimos anos. Isto porque, os sistemas de equações estão presentes em diversos problemas da computação cientí ca, especialmente naqueles que empregam equações diferenciais parciais (EDPs) que modelam fenômenos físicos, e que precisam ser discretizadas para serem tratadas computacionalmente. O processo de discretização resulta em sistemas de equações que necessitam ser resolvidos a cada passo de tempo. Em geral, esses sistemas têm como características a esparsidade e um grande número de incógnitas. Devido ao porte desses sistemas é necessária uma grande quantidade de memória e velocidade de processamento, sendo adequado o uso de computação de alto desempenho na obtenção da solução dos mesmos. Dentro desse contexto, é feito neste trabalho um estudo sobre o uso de métodos de decomposição de domínio na resolução de sistemas de equações em paralelo. Esses métodos baseiam-se no particionamento do domínio computacional em subdomínios, de modo que a solução global do problema é obtida pela combinação apropriada das soluções de cada subdomínio. Uma vez que diferentes subdomínios podem ser tratados independentemente, tais métodos são atrativos para ambientes paralelos. Mais especi camente, foram implementados e analisados neste trabalho, três diferentes métodos de decomposição de domínio. Dois desses com sobreposição entre os subdomínios, e um sem sobreposição. Dentre os métodos com sobreposição foram estudados os métodos aditivo de Schwarz e multiplicativo de Schwarz. Já dentre os métodos sem sobreposição optou-se pelo método do complemento de Schur. Todas as implementações foram desenvolvidas para serem executadas em clusters de PCs multiprocessados e estão incorporadas ao modelo HIDRA, que é um modelo computacional paralelo multifísica desenvolvido no Grupo de Matemática da Computação e Processamento de Alto Desempenho (GMCPAD) para a simulação do escoamento e do transporte de substâncias em corpos de águas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Matemática - IBILCE