939 resultados para Equações diferenciais Parciais


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste trabalho é tratar da simulação do fenômeno de propagação de ondas em uma haste heterogênea elástico, composta por dois materiais distintos (um linear e um não-linear), cada um deles com a sua própria velocidade de propagação da onda. Na interface entre estes materiais existe uma descontinuidade, um choque estacionário, devido ao salto das propriedades físicas. Empregando uma abordagem na configuração de referência, um sistema não-linear hiperbólico de equações diferenciais parciais, cujas incógnitas são a velocidade e a deformação, descrevendo a resposta dinâmica da haste heterogénea. A solução analítica completa do problema de Riemann associado são apresentados e discutidos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A engenharia geotécnica é uma das grandes áreas da engenharia civil que estuda a interação entre as construções realizadas pelo homem ou de fenômenos naturais com o ambiente geológico, que na grande maioria das vezes trata-se de solos parcialmente saturados. Neste sentido, o desempenho de obras como estabilização, contenção de barragens, muros de contenção, fundações e estradas estão condicionados a uma correta predição do fluxo de água no interior dos solos. Porém, como a área das regiões a serem estudas com relação à predição do fluxo de água são comumente da ordem de quilômetros quadrados, as soluções dos modelos matemáticos exigem malhas computacionais de grandes proporções, ocasionando sérias limitações associadas aos requisitos de memória computacional e tempo de processamento. A fim de contornar estas limitações, métodos numéricos eficientes devem ser empregados na solução do problema em análise. Portanto, métodos iterativos para solução de sistemas não lineares e lineares esparsos de grande porte devem ser utilizados neste tipo de aplicação. Em suma, visto a relevância do tema, esta pesquisa aproximou uma solução para a equação diferencial parcial de Richards pelo método dos volumes finitos em duas dimensões, empregando o método de Picard e Newton com maior eficiência computacional. Para tanto, foram utilizadas técnicas iterativas de resolução de sistemas lineares baseados no espaço de Krylov com matrizes pré-condicionadoras com a biblioteca numérica Portable, Extensible Toolkit for Scientific Computation (PETSc). Os resultados indicam que quando se resolve a equação de Richards considerando-se o método de PICARD-KRYLOV, não importando o modelo de avaliação do solo, a melhor combinação para resolução dos sistemas lineares é o método dos gradientes biconjugados estabilizado mais o pré-condicionador SOR. Por outro lado, quando se utiliza as equações de van Genuchten deve ser optar pela combinação do método dos gradientes conjugados em conjunto com pré-condicionador SOR. Quando se adota o método de NEWTON-KRYLOV, o método gradientes biconjugados estabilizado é o mais eficiente na resolução do sistema linear do passo de Newton, com relação ao pré-condicionador deve-se dar preferência ao bloco Jacobi. Por fim, há evidências que apontam que o método PICARD-KRYLOV pode ser mais vantajoso que o método de NEWTON-KRYLOV, quando empregados na resolução da equação diferencial parcial de Richards.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho de pesquisa tem por objetivo apresentar e investigar a viabilidade de um método numérico que contempla o paralelismo no tempo. Este método numérico está associado a problemas de condição inicial e de contorno para equações diferenciais parciais (evolutivas). Diferentemente do método proposto neste trabalho, a maioria dos métodos numéricos associados a equações diferencias parciais evolutivas e tradicionalmente encontrados, contemplam apenas o paralelismo no espaço. Daí, a motivação em realizar o presente trabalho de pesquisa, buscando não somente um método com paralelismo no tempo mas, sobretudo, um método viável do ponto de vista computacional. Para isso, a implementação do esquema numérico proposto está por conta de um algoritmo paralelo escrito na linguagem C e que utiliza a biblioteca MPI. A análise dos resultados obtidos com os testes de desempenho revelam um método numérico escalável e que exige pouco nível de comunicação entre processadores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho é apresentada uma nova modelagem matemática para a descrição do escoamento de um líquido incompressível através de um meio poroso rígido homogêneo e isotrópico, a partir do ponto de vista da Teoria Contínua de Misturas. O fenômeno é tratado como o movimento de uma mistura composta por três constituintes contínuos: o primeiro representando a matriz porosa, o segundo representando o líquido e o terceiro representando um gás de baixíssima densidade. O modelo proposto possibilita uma descrição matemática realista do fenômeno de transição insaturado/saturado a partir de uma combinação entre um sistema de equações diferenciais parciais e uma desigualdade. A desigualdade representa uma limitação geométrica oriunda da incompressibilidade do líquido e da rigidez do meio poroso. Alguns casos particulares são simulados e os resultados comparados com resultados clássicos, mostrando as consequências de não levar em conta as restrições inerentes ao problema.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho, será considerado um problema de controle ótimo quadrático para a equação do calor em domínios retangulares com condição de fronteira do tipo Dirichlet é nos quais, a função de controle (dependente apenas no tempo) constitui um termo de fonte. Uma caracterização da solução ótima é obtida na forma de uma equação linear em um espaço de funções reais definidas no intervalo de tempo considerado. Em seguida, utiliza-se uma sequência de projeções em subespaços de dimensão finita para obter aproximações para o controle ótimo, o cada uma das quais pode ser gerada por um sistema linear de dimensão finita. A sequência de soluções aproximadas assim obtidas converge para a solução ótima do problema original. Finalmente, são apresentados resultados numéricos para domínios espaciais de dimensão 1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esse texto trata do problema de um fluido contaminado escoando por um meio poroso, tratando os componentes na mistura como meios contínuos. Na primeira parte, desenvolvemos a teoria de misturas de meios contínuos e discutimos equações da continuidade, momento linear e momento angular. A seguir, descrevemos o problema em detalhe e fazemos hipóteses para simplificar o escoamento. Aplicamos as equações encontradas anteriormente para encontrarmos um sistema de equações diferenciais parciais. Desse ponto em diante, o problema se torna quase puramente matemático. Discutimos o caso insaturado, e depois a saturação do meio poroso. Finalmente, adicionamos um contaminante à mistura e, em seguida, N contaminantes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O desenvolvimento de software livre de Jacobiana para a resolução de problemas formulados por equações diferenciais parciais não-lineares é de interesse crescente para simular processos práticos de engenharia. Este trabalho utiliza o chamado algoritmo espectral livre de derivada para equações não-lineares na simulação de fluxos em meios porosos. O modelo aqui considerado é aquele empregado para descrever o deslocamento do fluido compressível miscível em meios porosos com fontes e sumidouros, onde a densidade da mistura de fluidos varia exponencialmente com a pressão. O algoritmo espectral utilizado é um método moderno para a solução de sistemas não-lineares de grande porte, o que não resolve sistemas lineares, nem usa qualquer informação explícita associados com a matriz Jacobiana, sendo uma abordagem livre de Jacobiana. Problemas bidimensionais são apresentados, juntamente com os resultados numéricos comparando o algoritmo espectral com um método de Newton inexato livre de Jacobiana. Os resultados deste trabalho mostram que este algoritmo espectral moderno é um método confiável e eficiente para a simulação de escoamentos compressíveis em meios porosos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo desta dissertação é a paralelização e a avaliação do desempenho de alguns métodos de resolução de sistemas lineares esparsos. O DECK foi utilizado para implementação dos métodos em um cluster de PCs. A presente pesquisa é motivada pela vasta utilização de Sistemas de Equações Lineares em várias áreas científicas, especialmente, na modelagem de fenômenos físicos através de Equações Diferenciais Parciais (EDPs). Nessa área, têm sido desenvolvidas pesquisas pelo GMC-PAD – Grupo de Matemática da Computação e Processamento de Alto Desempenho da UFRGS, para as quais esse trabalho vem contribuindo. Outro fator de motivação para a realização dessa pesquisa é a disponibilidade de um cluster de PCs no Instituto de Informática e do ambiente de programação paralela DECK – Distributed Execution and Communication Kernel. O DECK possibilita a programação em ambientes paralelos com memória distribuída e/ou compartilhada. Ele está sendo desenvolvido pelo grupo de pesquisas GPPD – Grupo de Processamento Paralelo e Distribuído e com a paralelização dos métodos, nesse ambiente, objetiva-se também validar seu funcionamento e avaliar seu potencial e seu desempenho. Os sistemas lineares originados pela discretização de EDPs têm, em geral, como características a esparsidade e a numerosa quantidade de incógnitas. Devido ao porte dos sistemas, para a resolução é necessária grande quantidade de memória e velocidade de processamento, característicos de computações de alto desempenho. Dois métodos de resolução foram estudados e paralelizados, um da classe dos métodos diretos, o Algoritmo de Thomas e outro da classe dos iterativos, o Gradiente Conjugado. A forma de paralelizar um método é completamente diferente do outro. Isso porque o método iterativo é formado por operações básicas de álgebra linear, e o método direto é formado por operações elementares entre linhas e colunas da matriz dos coeficientes do sistema linear. Isso permitiu a investigação e experimentação de formas distintas de paralelismo. Do método do Gradiente Conjugado, foram feitas a versão sem précondicionamento e versões pré-condicionadas com o pré-condicionador Diagonal e com o pré-condicionador Polinomial. Do Algoritmo de Thomas, devido a sua formulação, somente a versão básica foi feita. Após a paralelização dos métodos de resolução, avaliou-se o desempenho dos algoritmos paralelos no cluster, através da realização de medidas do tempo de execução e foram calculados o speedup e a eficiência. As medidas empíricas foram realizadas com variações na ordem dos sistemas resolvidos e no número de nodos utilizados do cluster. Essa avaliação também envolveu a comparação entre as complexidades dos algoritmos seqüenciais e a complexidade dos algoritmos paralelos dos métodos. Esta pesquisa demonstra o desempenho de métodos de resolução de sistemas lineares esparsos em um ambiente de alto desempenho, bem como as potencialidades do DECK. Aplicações que envolvam a resolução desses sistemas podem ser realizadas no cluster, a partir do que já foi desenvolvido, bem como, a investigação de précondicionadores, comparação do desempenho com outros métodos de resolução e paralelização dos métodos com outras ferramentas possibilitando uma melhor avaliação do DECK.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho são desenvolvidos métodos numéricos para inversão da transformada de Laplace, fazendo-se uso de polinômios trigonométricos e de Laguerre. Sua utilização é ilustrada num problema de fronteira móvel da área de engenharia nuclear, através do algoritmo computacional ALG-619. Uma revisão dos aspectos analíticos básicos da transformada de Laplace e sua utilização na resolução de equações diferenciais parciais é apresentada de maneira suscinta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A filtragem de imagens visando a redução do ruído é uma tarefa muito importante em processamento de imagens, e encontra diversas aplicações. Para que a filtração seja eficiente, ela deve atenuar apenas o ruído na imagem, sem afetar estruturas importantes, como as bordas. Há na literatura uma grande variedade de técnicas propostas para filçtragem de imagens com preservação de bordas, com as mais variadas abordagens, deentrte as quais podem ser citadas a convolução com máscaras, modelos probabilísticos, redes neurais, minimização de funcionais e equações diferenciais parciais. A transformada wavelet é uma ferramenta matemática que permite a decomposição de sinais e imagens em múltiplas resoluções. Essa decomposição é chamada de representação em wavelets, e pode ser calculada atrravés de um algorítmo piramidal baseado em convoluções com filtros passa-bandas e passa-baixas. Com essa transformada, as bordas podem ser calculadas em múltiplas resoluções. Além disso, como filtros passa-baixas são utilizados na decomposição, a atenuação do ruído é um processo intrínseco à transformada. Várias técnicas baseadas na transformada wavelet têm sido propostas nos últimos anos, com resultados promissores. Essas técnicas exploram várias características da transformada wavelet, tais como a magnitude de coeficientes e sua evolução ao longo das escalas. Neste trabalho, essas características da transformada wavelet são exploradas para a obtenção de novas técnicas de filtragem com preservação das bordas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho visa desenvolver um modelo físico e matemático geral para os processos de extração sólido-líquido em fluxos contracorrente cruzados (CCC) que são utilizados na indústria de alimentos. Levam-se em consideração os processos principais (o transporte de massa entre as fases, difusão e convecção) envolvidos por todo o campo de extração, com uma abordagem bidimensional evolutiva, incluindo as zonas de carregamento, drenagem e as bandejas acumuladoras. O modelo matemático é formado por equações diferenciais parciais que determinam a alteração das concentrações nas fases poro e “bulk” em todo o campo de extração e equações diferenciais ordinárias (que refletem as evoluções das concentrações médias nas bandejas). As condições de contorno estabelecem as ligações entre os fluxos CCC da micela e matéria-prima e consideram, também, a influência das zonas de drenagem e carregamento. O algoritmo de resolução utiliza o método de linhas que transforma as equações diferenciais parciais em equações diferenciais ordinárias, que são resolvidas pelo método de Runge-Kutta. Na etapa de validação do modelo foram estabelecidos os parâmetros da malha e o passo de integração, a verificação do código com a lei de conservação da espécie e um único estado estacionário. Também foram realizadas a comparação com os dados experimentais coletados no extrator real e com o método de estágios ideais, a análise da influência de propriedades da matéria-prima nas características principais do modelo, e estabelecidos os dados iniciais do regime básico (regime de operação) Foram realizadas pesquisas numéricas para determinar: os regimes estacionário e transiente, a variação da constante de equilíbrio entre as fases, a variação do número de seções, a alteração da vazão de matéria-prima nas características de um extrator industrial e, também foram realizadas as simulações comparativas para diferentes tipos de matéria-prima (flocos laminados e flocos expandidos) usados amplamente na indústria. Além dessas pesquisas, o modelo também permite simular diferentes tipos de solventes. O estudo da capacidade de produção do extrator revelou que é necessário ter cuidado com o aumento da vazão da matéria-prima, pois um pequeno aumento desta pode causar grandes perdas de óleo tornando alto o custo da produção. Mesmo que ainda seja necessário abastecer o modelo com mais dados experimentais, principalmente da matéria-prima, os resultados obtidos estão em concordância com os fenômenos físico-químicos envolvidos no processo, com a lei de conservação de espécies químicas e com os resultados experimentais.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nesta dissertação apresentamos e desenvolvemos o Método de Perron, fazendo uma aplicação ao ploblema de Dirichlet para a equação das superfícies de curvatura média constante em R3. Apresentamos também uma extensão deste método dentro de EDP's e, por fim, obtemos uma extensão geométrica que se aplica a superfícies ao invés de gráficos. Comentamos a aplicação deste método geométrico á existência de superfícies mínimas tendo como bordo duas curvas convexas em planos paralelos do R3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A produção de soja é uma das principais atividades econômicas na Região Noroeste do Estado do Rio Grande do Sul. As perdas de produto em condições de comercialização ocasionadas nas atividades de secagem e armazenamento são significativas, justificando a pesquisa e aprimoramento destes processos. Nesta tese foram pesquisados dois problemas: 1. Modelamento matemático dos processos de secagem, utilizando parâmetros conhecidos de soja e 2. Modelamento matemático do problema de aeração para o cálculo da distribuição da pressão e da velocidade do ar na massa de grãos em unidades de armazenamento de soja. No problema de secagem foi desenvolvido um sistema composto de quatro equações diferenciais parciais hiperbólicas acopladas não-lineares, que descreve o comportamento da temperatura e do teor de umidade do ar e dos grãos em função do tempo. Para resolver o sistema foram utilizados os métodos das diferenças finitas (p. ex., métodos de MacCormack e Crank- Nicolson.) e o método dos volumes finitos. A análise dos resultados permitiu recomendar o método mais adequado para cada tipo do problema. Para determinação da intensidade do fluxo de massa e de calor foram utilizados os dados experimentais de camada fina obtidos da literatura e complementados com dados experimentais desta tese. Foi desenvolvido um equipamento para obtenção das curvas de secagem de grãos em secador de leito fixo, a fim de identificar o modelo para secagem em camada espessa. A comparação entre os resultados experimentais e das simulações numéricas mostrou que o modelo descreve razoavelmente a dinâmica de secagem No problema de aeração foi desenvolvido um modelo matemático que descreve o escoamento do ar em sistemas de armazenamento de grãos, baseado em relações experimentais entre velocidade e gradiente de pressão. Para resolver o problema de aeração foi utilizado o método dos elementos finitos e desenvolvido um programa computacional. Um teste realizado com o programa mostrou que os resultados da solução numérica convergem para uma solução analítica conhecida. As simulações realizadas mostraram que o programa computacional pode ser usado como instrumento auxiliar para o projeto de silos, possibilitando o cálculo e a visualização gráfica da distribuição das pressões e das linhas de corrente em diferentes seções do armazém.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fenômenos naturais, tecnológicos e industriais podem, em geral, ser modelados de modo acurado através de equações diferenciais parciais, definidas sobre domínios contínuos que necessitam ser discretizados para serem resolvidos. Dependendo do esquema de discretização utilizado, pode-se gerar sistemas de equações lineares. Esses sistemas são, de modo geral, esparsos e de grande porte, onde as incógnitas podem ser da ordem de milhares, ou até mesmo de milhões. Levando em consideração essas características, o emprego de métodos iterativos é o mais apropriado para a resolução dos sistemas gerados, devido principalmente a sua potencialidade quanto à otimização de armazenamento e eficiência computacional. Uma forma de incrementar o desempenho dos métodos iterativos é empregar uma técnica multigrid. Multigrid são uma classe de métodos que resolvem eficientemente um grande conjunto de equações algébricas através da aceleração da convergência de métodos iterativos. Considerando que a resolução de sistemas de equações de problemas realísticos pode requerer grande capacidade de processamento e de armazenamento, torna-se imprescindível o uso de ambientes computacionais de alto desempenho. Uma das abordagens encontradas na literatura técnica para a resolução de sistemas de equações em paralelo é aquela que emprega métodos de decomposição de domínio (MDDs). Os MDDs são baseados no particionamento do domínio computacional em subdomínios, de modo que a solução global do problema é obtida pela combinação apropriada das soluções obtidas em cada um dos subdomínios Assim, neste trabalho são disponibilizados diferentes métodos de resolução paralela baseado em decomposição de domínio, utilizando técnicas multigrid para a aceleração da solução de sistemas de equações lineares. Para cada método, são apresentados dois estudos de caso visando a validação das implementações. Os estudos de caso abordados são o problema da difusão de calor e o modelo de hidrodinâmica do modelo UnHIDRA. Os métodos implementados mostraram-se altamente paralelizáveis, apresentando bons ganhos de desempenho. Os métodos multigrid mostraram-se eficiente na aceleração dos métodos iterativos, já que métodos que utilizaram esta técnica apresentaram desempenho superior aos métodos que não utilizaram nenhum método de aceleração.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho apresentado no XXXV CNMAC, Natal-RN, 2014.