970 resultados para Epithelium
Resumo:
PURPOSE: To analyze in vivo the function of chicken acidic leucine-rich epidermal growth factor-like domain containing brain protein/Neuroglycan C (gene symbol: Cspg5) during retinal degeneration in the Rpe65⁻/⁻ mouse model of Leber congenital amaurosis. METHODS: We resorted to mice with targeted deletions in the Cspg5 and retinal pigment epithelium protein of 65 kDa (Rpe65) genes (Cspg5⁻/⁻/Rpe65⁻/⁻). Cone degeneration was assessed with cone-specific peanut agglutinin staining. Transcriptional expression of rhodopsin (Rho), S-opsin (Opn1sw), M-opsin (Opn1mw), rod transducin α subunit (Gnat1), and cone transducin α subunit (Gnat2) genes was assessed with quantitative PCR from 2 weeks to 12 months. The retinal pigment epithelium (RPE) was analyzed at P14 with immunodetection of the retinol-binding protein membrane receptor Stra6. RESULTS: No differences in the progression of retinal degeneration were observed between the Rpe65⁻/⁻ and Cspg5⁻/⁻/Rpe65⁻/⁻ mice. No retinal phenotype was detected in the late postnatal and adult Cspg5⁻/⁻ mice, when compared to the wild-type mice. CONCLUSIONS: Despite the previously reported upregulation of Cspg5 during retinal degeneration in Rpe65⁻/⁻ mice, no protective effect or any involvement of Cspg5 in disease progression was identified.
Resumo:
Background: To compare the different schemes that have been proposed during the last thirteen years to explain the renewal of the corneal epithelium. Material and Methods:We analyzed all the data present in the literature to explain the renewal of the corneal epithelium in mammals. According to the schemes proposed in the literature we developed a 3D animation to facilitate the understanding of the different concepts. Results:Three different schemes have been proposed to explain the renewal of the corneal epithelium in mammals during the last thirteen years. 1950-1981: the corneal epithelium was thought being renewed by mitosis of cells located in the basal layer. At this time scientist were not talking about stem cells. 1981-1986 was the period of the "XYZ hypothesis" or the transdifferentiation paradigm. At this time the conjunctival epithelium renewed the corneal epithelium in a centripetal migration. 1986-2008: the limbal stem cell paradigm, there were no stem cells in the corneal epithelium, all the corneal stem cells were located in the limbus and renewed the central cornea after a migration of 6 to 7 mm of transient amplifying cells toward the centre of the cornea. 2008, epithelial stem cells were found in the central cornea in mammals (Nature, Majo et al. November 2008). Discussion:We thought that the renewal of the corneal epithelium was completely defined. According to the last results we published in Nature, the current paradigm will be revisited. The experiments we made were on animals and the final demonstration on human has still to be done. If we find the same results in human, a new paradigm will be define and will change the way we consider ocular surface therapy and reconstruction.
Resumo:
Light toxicity is suspected to enhance certain retinal degenerative processes such as age-related macular degeneration. Death of photoreceptors can be induced by their exposure to the visible light, and although cellular processes within photoreceptors have been characterized extensively, the role of the retinal pigment epithelium (RPE) in this model is less well understood. We demonstrate that exposition to intense light causes the immediate breakdown of the outer blood-retinal barrier (BRB). In a molecular level, we observed the slackening of adherens junctions tying up the RPE and massive leakage of albumin into the neural retina. Retinal pigment epithelial cells normally secrete vascular endothelial growth factor (VEGF) at their basolateral side; light damage in contrast leads to VEGF increase on the apical side - that is, in the neuroretina. Blocking VEGF, by means of lentiviral gene transfer to express an anti-VEGF antibody in RPE cells, inhibits outer BRB breakdown and retinal degeneration, as illustrated by functional, behavioral and morphometric analysis. Our data show that exposure to high levels of visible light induces hyperpermeability of the RPE, likely involving VEGF signaling. The resulting retinal edema contributes to irreversible damage to photoreceptors. These data suggest that anti-VEGF compounds are of therapeutic interest when the outer BRB is altered by retinal stresses.
Resumo:
Diabetic retinopathy is associated with ocular inflammation, leading to retinal barrier breakdown, macular edema, and visual cell loss. We investigated the molecular mechanisms involved in microglia/macrophages trafficking in the retina and the role of protein kinase Cζ (PKCζ) in this process. Goto Kakizaki (GK) rats, a model for spontaneous type 2 diabetes were studied until 12 months of hyperglycemia. Up to 5 months, sparse microglia/macrophages were detected in the subretinal space, together with numerous pores in retinal pigment epithelial (RPE) cells, allowing inflammatory cell traffic between the retina and choroid. Intercellular adhesion molecule-1 (ICAM-1), caveolin-1 (CAV-1), and PKCζ were identified at the pore border. At 12 months of hyperglycemia, the significant reduction of pores density in RPE cell layer was associated with microglia/macrophages accumulation in the subretinal space together with vacuolization of RPE cells and disorganization of photoreceptors outer segments. The intraocular injection of a PKCζ inhibitor at 12 months reduced iNOS expression in microglia/macrophages and inhibited their migration through the retina, preventing their subretinal accumulation. We show here that a physiological transcellular pathway takes place through RPE cells and contributes to microglia/macrophages retinal trafficking. Chronic hyperglycemia causes alteration of this pathway and subsequent subretinal accumulation of activated microglia/macrophages.
Resumo:
Hair follicle morphogenesis depends on a delicate balance between cell proliferation and apoptosis, which involves epithelium-mesenchyme interactions. We show that peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) and Akt1 are highly expressed in follicular keratinocytes throughout hair follicle development. Interestingly, PPARbeta/delta- and Akt1-deficient mice exhibit similar retardation of postnatal hair follicle morphogenesis, particularly at the hair peg stage, revealing a new important function for both factors in the growth of early hair follicles. We demonstrate that a time-regulated activation of the PPARbeta/delta protein in follicular keratinocytes involves the up-regulation of the cyclooxygenase 2 enzyme by a mesenchymal paracrine factor, the hepatocyte growth factor. Subsequent PPARbeta/delta-mediated temporal activation of the antiapoptotic Akt1 pathway in vivo protects keratinocytes from hair pegs against apoptosis, which is required for normal hair follicle development. Together, these results demonstrate that epithelium-mesenchyme interactions in the skin regulate the activity of PPARbeta/delta during hair follicle development via the control of ligand production and provide important new insights into the molecular biology of hair growth.
Resumo:
Recently, we examined the spermatogenesis cycle length in two shrews species, Sorex araneus characterized by a very high metabolic rate and a polyandric mating system (sperm competition) resulting in a short cycle and Crocidura russula characterized by a much lower metabolic rate and a monogamous mating system showing a longer cycle. In this study, we investigated the spermatogenesis cycle in Neomys fodiens showing an intermediate metabolic rate. We described the stages of seminiferous epithelium according to the spermatid morphology method and we calculated the cycle length of spermatogenesis using incorporation of 5-bromodeoxyuridine into DNA of the germ cells. Twelve males were injected intraperitoneally with 5-bromodeoxyuridine, and the testes were collected. For cycle length determination, we applied a recently developed statistical method. The calculated cycle length is 8.69 days and the total duration of spermatogenesis based on 4.5 cycles is approximately 39.1 days, intermediate between the duration of spermatogenesis of S. araneus (37.6 days) and C. russula (54.5 days) and therefore congruent with both the metabolic rate hypothesis and the sperm competition hypothesis. Relative testes size of 1.4% of body mass indicates a promiscuous mating system.
Resumo:
Purpose: Mediums have been developed to conserve corneal endothelium in organ-culture during eye banking. CorneaMax® is used by 25% of Eye Bank in Europe. Only little is known about conservation of corneal epithelium with this medium during banking. Its preservation could be of interest in clinic to cure corneal disease with stem cells deficiency. Therefore, we wanted to examine the integrity of human corneal epithelium maintained in CorneaMax®. Methods: Human corneas, considered unsuitable for transplantation, were obtained from the Eye Bank in Lausanne. Average post-mortem time was 14 hours. Cornoscleral rings were maintained in organ-culture in Corneamax® at 32°C. Samples were formalin-fixed after period ranging from 0 (D0) to 35 days (D35, N=5 for each time points) and stained with H&E. Proliferation and apoptosis were evaluated by immunostaining with antibody against Ki67 and Caspase3 respectively. Results: Corneas, which were not in organ-cultured (D0), showed different morphology, including intact epithelium with 5 to 7 layers, but also completely denuded basement membrane. In two cases, at D0, the epithelium lost its adherence to the basal lamina of the cornea creating a large epithelial sheet. During the two first days, corneas and limbus area lost totally their epithelium, except for some remaining limbal basal cells. From day 2 to day 10, regeneration of the epithelium took place, starting from the limbal region in direction to the central cornea. From day 10 to day 35, corneal epithelium appeared as an atrophic epithelium, consisting of only two cell layers. Proliferation happened in the whole cornea during the 35 days of organ-culture, as shown by Ki67 positive cells. Apoptosis was rarely detected in the corneal epithelium. Conclusions: Corneas maintained in CorneaMax® showed a complete disappearance of the corneal epithelium during the two first days and a conservation of limbal basal cells in the limbal region. These remaining cells allowed a full regeneration of the tissue, leading to an atrophic epithelium, composed of only two cell layers. This atrophic epithelium could be seen in all the organ-cultured corneas during the 35 days of conservation. This study is a first step to develop medium in organ-culture in order to conserve corneal epithelial cells.
Resumo:
Les muqueuses respiratoires, genitales et digestives sont continuellement exposées aux antigènes de l?alimentation, à la flore intestinale et aux pathogènes. Cela implique une activité immunologique intense et finement régulée dans ces tissus. On admet que la modulation de ces réponses immunitaires muqueuses s?effectue dans des organes sentinels spécifiques appelés o-MALT (organized mucosal associated lymphoid tissues). Ces processus de modulation et la biologie de ces sites immuno-inducteurs sont peu connus. Ceci est pourtant d?une grande relevance si l?on veut faire un design rationnel de drogues et de vaccins muqueux. Dans l?intestin grèle, ces organes sont composés de follicules multiples et sont appelés plaques de Peyer. Ils sont constitués de follicules enrichis en cellules B comprenant ou non un centre germinatif, de regions interfolliculaires comprenant des cellules T, et d?une région en d ome riche en cellules dendritiques, cellules B naives et cellules T CD4+, surmontée par un epithelium specialisé, le FAE (epithelium associé aux follicules). Le FAE contient des cellules M spécialisées dans le transport de macromolécules et micro-organismes de la lumière intestinale au tissu lymphoide sous-jacent. Ce transport des antigènes est une condition obligatoire pour induire une réponse immunitaire. Les cellules du FAE, outre les cellules M, expriment un programme de différenciation distinct de celui des cellules associées aux villosités. Ceci est characterisé par une baisse des fonctions digestives et de défenses, et l?expression constitutive des chimiokines: CCL20 et CCL25. Le but de l?étude présentée ici est de rechercher les facteurs cellulaires et/ou moléculaire responsables de cette différenciation. Certaines études ont démontré l?importance du contact entre le compartiment mésenchymateux et l?épithelium pour la morphogenèse de ce dernier. En particulier, les molécules de la matrice extracellulaire peuvent activer des gènes clefs qui, à leur tour, vont controler l?adhésion et la differenciation cellulaire. Dans l?intestin, les cellules mésenchymateuses différencient en myofibroblastes qui participent à l?élaboration de la matrice extracellulaire. Dans cette étude, nous avons décrit les différences d?expression de molécules de la matrices sous le FAE et les villosités. Nous avons également montré une absence de myofibroblastes sous le FAE. Suite à plusieurs évidences expérimentales, certains ont proposé une influence des composés présents dans la lumière sur la différenciation et/ou la maturation des plaques de Peyer. La chimiokine CCL20, capable de recruter des cellules initiatrices de la réponse immunitaire, constitue notre seul marqueur positif de FAE. Nous avons pu montrer que la flagelline, un composé du flagelle bactérien, était capable d?induire l?expression de CCL20 in vitro et in vivo. Cet effet n?est pas limité aux cellules du FAE mais est observé sur l?ensemble de l?épithelium intestinal. Molecular mechanisms of FAE differenciation. La signalement induit par la lymphotoxine ß est critique pour l?organogenèse des plaques de Peyer, car des souris déficientes pour cette molécules ou son récepteur n?ont ni plaque de Peyer, ni la plupart des ganglions lymphatiques. Nous avons obtenus plusieurs évidences que la lymphotoxine ß était impliquée dans la régulation du gène CCL20 in vitro et in vivo.<br/><br/>Mucosal surfaces of the respiratory, genital and digestive systems are exposed to food antigens, normal bacterial flora and oral pathogens. This justifies an intense and tuned immunological activity in mucosal tissues. The modulation of immune responses in the mucosa is thought to occur in specific sentinel sites, the organized mucosa associated lymphoid tissues (o-MALT). This immune modulation and the biology of these immune-inductive sites are poorly understood but highly important and relevant in the case of drugs and vaccines design. In the small intestine, these organs (gut associated lymphoid tissue : GALT) consists of single or multiple lymphoid follicles, the so-called Peyer?s patches (PP), with typical B cell-enriched follicles and germinal centers, inter-follicular T cell areas, and a dome region enriched in dendritic cells, naive B cells, and CD4+ T cells under a specialized follicle associated epithelium (FAE). To trigger protective immunity, antigens have to cross the mucosal epithelial barrier. This is achieved by the specialized epithelial M cells of the FAE that are able to take up and transport macromolecules and microorganisms from the environment into the underlying organized lymphoid tissue. The ontogeny of M cells remains controversial: some data are in favor of a distinct cell lineage, while others provide evidence for the conversion of differentiated enterocytes into M cells. In this study we mapped the proliferative, M cells and apoptotic compartments along the FAE. Enterocytes acquire transient M cell features as they leave the crypt and regain enterocyte properties as they move towards the apoptotic compartment at the apex of the FAE, favouring the hypothesis of a plastic phenotype. The follicle-associated epithelium (FAE) is found exclusively over lymphoid follicles in mucosal tissues, including Peyer?s patches. The enterocytes over Peyer?s patches express a distinct phenotype when compared to the villi enterocytes, characterized by the down regulation of digestive and defense functions and the constitutive expression of chemokines, i.e. CCL20 and CCL25. The purpose of this study was to investigate and identify the potential cells and/or molecules instructing FAE differentiation. Contact between the epithelial and the mesenchymal cell compartment is required for gut morphogenesis. Extracellular matrix molecules (ECM) can activate key regulatory genes which in turn control cell adhesion and differentiation. In the gut, mesenchymal cells differentiate into myofibroblats that participate to the elaboration of ECM. We have described a differential expression of extracellular matrix components under the FAE, correlating with the absence of subepithelial myofibroblats. Molecular mechanisms of FAE differenciation. Different studies proposed an influence of the luminal compartment in the differentiation and/or the maturation of PP. CCL20, a chemokine able to recruit cells that initiate adaptive immunity constitutes our first positive FAE molecular marker. We have shown that CCL20 gene expression is inducible in vitro and in vivo in intestinal epithelium by flagellin, a component of bacterial flagella. This effect was not restricted to the FAE. Lymphotoxin ß (LTß) signaling is critical for PPs organogenesis as LT deficient mice as well as LTß-receptor-/- mice lack PPs and most of the lymph nodes (LN). The continuous signaling via LTßR-expressing cells appears necessary for the maintenance throughout the life of PP architecture. We obtained in vitro and in vivo evidence that LTß signalling is involved in CCL20 gene expression.
Resumo:
PURPOSE: To study the effect of various baseline factors, particularly the type of drug (ranibizumab vs aflibercept), on the functional and anatomic response of treatment-naïve pigment epithelial detachment (PED) associated with neovascular age-related macular degeneration (neovascular AMD), after 3 intravitreal injections. DESIGN: Retrospective consecutive case series. METHODS: This study included 102 patients (n = 115 eyes) with treatment-naïve neovascular AMD and PED (>150 μm), who were treated with either ranibizumab (n = 68 eyes) or aflibercept (n = 47 eyes). A multivariate analysis using stepwise linear regression was performed in order to assess factors influencing visual acuity improvement, as well as treatment response of PED height after 3 monthly injections. RESULTS: Multivariate analysis revealed that better visual improvement was associated with lower best-corrected visual acuity (BCVA) at baseline (P = .001), presence of subretinal fluid (P = .001), and retinal angiomatous proliferation (P = .001); PED reduction was associated with higher PED at baseline (P = .001), predominantly serous PED (P = .003), and the use of aflibercept (P = .022). Drug type was not associated with change in BCVA at 3 months. CONCLUSION: Eyes with neovascular AMD and PED showed significant functional and anatomic response after 3 monthly intravitreal anti-VEGF injections. The functional response depended on baseline BCVA, presence of subretinal fluid, and retinal angiomatous proliferation, while anatomic response was influenced by baseline PED height, degree of vascularization, and drug type. Drug type was not associated with change in BCVA, but had a weak effect on anatomic response.
Resumo:
Nile tilapia, Oreochromis niloticus, of both sexes were reared in freshwater and exposed to 0.5, 1.0 and 2.5mg L-1 of waterborne copper for a period of 21 days. Liver and gill samples were collected after 21 days of exposure to copper and lesions were analyzed by light microscopy. The main histopathological changes observed in gills exposed to the highest concentration were edema, lifting of lamellar epithelia and an intense vasodilatation of the lamellar vascular axis. Although less frequent, lamellar fusion caused by the filamentar epithelium proliferation and some lamellar aneurisms were also found. The liver of control group exhibited a quite normal architecture, while the fish exposed to copper showed vacuolation and necrosis. These hepatic alterations were more evident in fish exposed to 1.0 and 2.5mg L-1 copper concentrations. The number of hepatocytes nucleus per mm² of hepatic tissue decreased with the increase of copper concentration. In contrast, the hepatic somatic index was high in fish exposed at 2.5mg L-1 of copper. In short, this work advance new knowledge as influence of copper in the gill and liver histology of O. niloticus and demonstrated that their effects could be observed at different concentrations.
Resumo:
A morphological and cell culture study from nasal mucosa of dogs was performed in order to establish a protocol to obtain a cell population committed to neuronal lineage, as a proposal for the treatment of traumatic and degenerative lesions in these animals, so that in the future these results could be applied to the human species. Twelve mongrel dogs of 60-day aged pregnancy were collected from urban pound dogs in São Paulo. Tissue from cribriform ethmoidal lamina of the fetuses was collected at necropsy under sterile conditions around 1h to 2h postmortem by uterine sections and sections from the fetal regions described above. Isolated cells of this tissue were added in DMEM/F-12 medium under standard conditions of incubation (5% CO², >37ºC). Cell culture based on isolated cells from biopsies of the olfactory epithelium showed rapid growth when cultured for 24 hours, showing phase-bright sphere cells found floating around the fragments, attached on culture flasks. After 20 days, a specific type of cells, predominantly ellipsoids or fusiform cells was characterized in vitro. The indirect immunofluorescence examination showed cells expressing markers of neuronal precursors (GFAP, neurofilament, oligodendrocyte, and III â-tubulin). The cell proliferation index showed Ki67 immunostaining with a trend to label cell groups throughout the apical region, while PCNA immunostaining label predominantly cell groups lying above the basal lamina. The transmission electron microscopy from the olfactory epithelium of dogs revealed cells with electron-dense cytoplasm and preserving the same distribution as those of positive cell staining for PCNA. Metabolic activity was confirmed by presence of euchromatin in the greatest part of cells. All these aspects give subsidies to support the hypothesis about resident progenitor cells among the basal cells of the olfactory epithelium, committed to renewal of these cell populations, especially neurons.