987 resultados para Enzymes activity
Resumo:
A study was conducted to assess the effect of condensed tannins on the activity of fibrolytic enzymes from the anaerobic rumen fungus, Neocallimastix hurleyensis and a recombinant ferulic acid esterase (FAE) from the aerobic fungus Aspergillus niger. Condensed tannins were extracted from the tropical legumes Desmodium ovalifolium, Flemingia macrophylla, Leucaena leticocephala, Leucaena pallida, Calliandra calothyrsus and Clitoria fairchildiana and incubated in fungal enzyme mixtures or with the recombinant FAE. In most cases, the greatest reductions in enzyme activities were observed with tannins purified from D. ovalifolium and F macrophylla and the least with tannins from L leucocephala. Thus, whereas 40 mu g ml(-1) of condensed tannins from C. calothyrsus and L. leucocephala were needed to halve the activity of N. hurleyensis carboxymethylcellulase (CMCase), just 5.5 mu g ml(-1) of the same tannins were required to inhibit 50% of xylanase activity. The beta-D-glucosidase and beta-D-Xylosidase enzymes were less sensitive to tannin inhibition and concentrations greater than 100 mu g ml(-1) were required to reduce their activity by 50%. In other assays, the inhibitory effect of condensed tannins when added to incubation mixtures containing particulate substrates (the primary cell walls of E arundinacea) or when bound to these substrate was compared. Substrate-associated tannins were more effective in preventing fibrolytic activities than tannins added directly to incubations solutions. It was concluded that condensed tannins from tropical legumes can inhibit fibrolytic enzyme activities, although the extent of the effect was dependent on the tannin, the nature of its association with the substrate and the enzyme involved. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Seventy-five fungal strains from different groups of basidiomycetes, newly isolated from rotten wood, were screened for pectinolytic activity. Despite the fact that basidiomycetes are scarcely referred to as pectinase producers, the polygalacturonase (PG) activity was detected in 76 % of the strains; 16 % with activity higher than 40 nkat/g, 40 % between 13.3 and 40 nkat/g, and 44 % with activity lower than 13.3 nkat/g. The highest productions were obtained among the fungi from order Aphyllophorales, family Polyporaceae. The characterization of the enzymes from the highest PG producers (Lentinus sp., Gloeophyllum striatum, Pycnoporus sanguineus, Schizophyllum commune) showed optimum temperature for catalytic activity at 60-70°C and two peaks of pH optimum (3.5-4.5 and 8.5-9.5). The enzymes exhibited high pH stability (3.0-11.0) but after incubation at 40°C for 1 h their activity dropped by 18-73 %.
Resumo:
The objective was to evaluate serum activity of the enzymes creatine kinase (CK) and aspartate aminotransferase (AST), which are leakage enzymes responsive to muscle injury, of athletic horses that underwent muscle biopsy and incremental jump test (IJT) involving incremental jumps. The animals were grouped as follows: the first group, horses with history of superior performance (SP); the second, with a history of inferior performance (IP); and lastly, a control group (CG). All groups underwent biopsy of the gluteus medius muscle, while groups SP and IP were also submitted to the incremental jump test (IJT) 24 hours after biopsy. The IJT consisted of three stages with 40 jumps each, where jump height increased progressively, from 40 to 60 and last, 80cm. Blood samples were drawn before biopsy, and 6 and 24 hours after the exercise as well. The levels of CK serum activity increased 6 hours after exercise and decreased 24 hours later in all groups, including CG. AST activity did not increase after biopsy and exercise. There was no increase of both enzyme activities that could be attributed to the exercise, possibly due to exercise short duration and/or low intensity. We conclude that the muscle biopsy was able to show that there was enough stimulus to cause CK enzyme leakage into the plasma, and consequent detection of increased serum activity, while the incremental jump test did not.
Resumo:
The effect of short-term creatine (Cr) supplementation upon content of skeletal muscle-derived-reactive oxygen species (ROS) was investigated. Wistar rats were supplemented with Cr (5 g/kg BW) or vehicle, by gavage, for 6 days. Soleus and extensor digitorum longus (EDL) muscles were removed and incubated for evaluation of ROS content using Amplex-UltraRed reagent. The analysis of expression and activity of antioxidant enzymes (superoxide dismutase 1 and 2, catalase and glutathione peroxidase) were performed. Direct scavenger action of Cr on superoxide radical and hydrogen peroxide was also investigated. Short-term Cr supplementation attenuated ROS content in both soleus and EDL muscles (by 41 and 33.7%, respectively). Cr supplementation did not change expression and activity of antioxidant enzymes. Basal TBARS content was not altered by Cr supplementation. In cell-free experiments, Cr showed a scavenger effect on superoxide radical in concentrations of 20 and 40 mM, but not on hydrogen peroxide. These results indicate that Cr supplementation decreases ROS content in skeletal muscle possibly due to a direct action of Cr molecule on superoxide radical.
Resumo:
Metformin is treatment of choice for the metabolic consequences seen in polycystic ovary syndrome for its insulin-sensitizing and androgen-lowering properties. Yet, the mechanism of action remains unclear. Two potential targets for metformin regulating steroid and glucose metabolism are AMP-activated protein kinase (AMPK) signaling and the complex I of the mitochondrial respiratory chain. Androgen biosynthesis requires steroid enzymes 17α-Hydroxylase/17,20 lyase (CYP17A1) and 3β-hydroxysteroid dehydrogenase type 2 (HSD3B2), which are overexpressed in ovarian cells of polycystic ovary syndrome women. Therefore, we aimed to understand how metformin modulates androgen production using NCI-H295R cells as an established model of steroidogenesis. Similar to in vivo situation, metformin inhibited androgen production in NCI cells by decreasing HSD3B2 expression and CYP17A1 and HSD3B2 activities. The effect of metformin on androgen production was dose dependent and subject to the presence of organic cation transporters, establishing an important role of organic cation transporters for metformin's action. Metformin did not affect AMPK, ERK1/2, or atypical protein kinase C signaling. By contrast, metformin inhibited complex I of the respiratory chain in mitochondria. Similar to metformin, direct inhibition of complex I by rotenone also inhibited HSD3B2 activity. In conclusion, metformin inhibits androgen production by mechanisms targeting HSD3B2 and CYP17-lyase. This regulation involves inhibition of mitochondrial complex I but appears to be independent of AMPK signaling.
Resumo:
An estimate of rate of transformation of organic matter and regeneration of nutrients (in particular phosphorus) was calculated for different regions of the Sea of Okhotsk. The rate was estimated by means of rate of complete oxidation of organic matter to CO2 and H2O catalyzed by enzymes of the electron transport system (ETS) and rate of hydrolytic splitting of phosphate from organic phosphorus compounds catalyzed by alkaline phosphatase. Organic matter destruction rate was at its maximum on the shelf of Kamchatka and Sakhalin, as well as in the layer of maximum oxygen gradients in deep waters. It was found that zones of intensive primary production were characterized by high rates of phosphorus regeneration, which provided for 80% of primary production when concentration of mineral phosphorus was low.
Resumo:
The involvement of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase in radiobiological processes has been described at the enzyme activity level. We irradiated radiation-resistant (RR) and radiation-sensitive (RS) mice and studied antioxidant enzymes at the transcriptional and activity level. In addition, aromatic hydroxylation and lipid peroxidation parameters were determined to study radiation resistance at the oxidation level. RS BALB/c/J Him mice and RR C3H He/Him mice were whole-body-irradiated with x-rays at 2, 4, and 6 Gy and killed 5, 15, and 30 min after irradiation. mRNA was isolated from liver and hybridized with probes for antioxidant enzymes and β-actin as a housekeeping gene control. Antioxidant enzyme activities were determined by standard assays. Parameters for aromatic hydroxylation (o-tyrosine) and lipid peroxidation (malondialdehyde) were determined by HPLC methods. Antioxidant transcription was unchanged in contrast to antioxidant activities; SOD and CAT activities were elevated within 15 min in RR animals but not in RS mice, at all doses studied. Glutathione peroxidase activity was not different between RR and RS mice and was only moderately elevated after irradiation. No significant differences were found between RR and RS animals at the oxidation level, although a radiation dose-dependent increase of oxidation products was detected in both groups. We found that ionizing irradiation led to increased antioxidant activity only minutes after irradiation in the absence of increased transcription of these antioxidant enzymes. RR animals show higher antioxidant enzyme activities than do RS mice, but oxidation products are comparable in RS and RR mice. As unchanged transcription of antioxidant enzymes could not have been responsible for the increased antioxidant enzyme activities, preformed antioxidant enzymes should have been released by the irradiation process. This would be in agreement with previous studies of preformed, stored SOD. The finding of higher SOD and CAT activities in RR than in RS animals could point to a role for these antioxidant enzymes for the process of radiation sensitivity.
Resumo:
The neurosteroid 3α-hydroxysteroid-5α-pregnan-20-one (allopregnanolone) acts as a positive allosteric modulator of γ-aminobutyric acid at γ-aminobutyric acid type A receptors and hence is a powerful anxiolytic, anticonvulsant, and anesthetic agent. Allopregnanolone is synthesized from progesterone by reduction to 5α-dihydroprogesterone, mediated by 5α-reductase, and by reduction to allopregnanolone, mediated by 3α-hydroxysteroid dehydrogenase (3α-HSD). Previous reports suggested that some selective serotonin reuptake inhibitors (SSRIs) could alter concentrations of allopregnanolone in human cerebral spinal fluid and in rat brain sections. We determined whether SSRIs directly altered the activities of either 5α-reductase or 3α-HSD, using an in vitro system containing purified recombinant proteins. Although rats appear to express a single 3α-HSD isoform, the human brain contains several isoforms of this enzyme, including a new isoform we cloned from human fetal brains. Our results indicate that the SSRIs fluoxetine, sertraline, and paroxetine decrease the Km of the conversion of 5α-dihydroprogesterone to allopregnanolone by human 3α-HSD type III 10- to 30-fold. Only sertraline inhibited the reverse oxidative reaction. SSRIs also affected conversions of androgens to 3α- and 3α, 17β-reduced or -oxidized androgens mediated by 3α-HSD type IIBrain. Another antidepressant, imipramine, was without any effect on allopregnanolone or androstanediol production. The region-specific expression of 3α-HSD type IIBrain and 3α-HSD type III mRNAs suggest that SSRIs will affect neurosteroid production in a region-specific manner. Our results may thus help explain the rapid alleviation of the anxiety and dysphoria associated with late luteal phase dysphoria disorder and major unipolar depression by these SSRIs.
Resumo:
High pressure homogenization (HPH) is a non-thermal method, which has been employed to change the activity and stability of biotechnologically relevant enzymes. This work investigated how HPH affects the structural and functional characteristics of a glucose oxidase (GO) from Aspergillus niger. The enzyme was homogenized at 75 and 150 MPa and the effects were evaluated with respect to the enzyme activity, stability, kinetic parameters and molecular structure. The enzyme showed a pH-dependent response to the HPH treatment, with reduction or maintenance of activity at pH 4.5-6.0 and a remarkable activity increase (30-300%) at pH 6.5 in all tested temperatures (15, 50 and 75°C). The enzyme thermal tolerance was reduced due to HPH treatment and the storage for 24 h at high temperatures (50 and 75°C) also caused a reduction of activity. Interestingly, at lower temperatures (15°C) the activity levels were slightly higher than that observed for native enzyme or at least maintained. These effects of HPH treatment on function and stability of GO were further investigated by spectroscopic methods. Both fluorescence and circular dichroism revealed conformational changes in the molecular structure of the enzyme that might be associated with the distinct functional and stability behavior of GO.
Resumo:
Trypsins and chymotrypsins are well-studied serine peptidases that cleave peptide bonds at the carboxyl side of basic and hydrophobic l-amino acids, respectively. These enzymes are largely responsible for the digestion of proteins. Three primary processes regulate the activity of these peptidases: secretion, precursor (zymogen) activation and substrate-binding site recognition. Here, we present a detailed phylogenetic analysis of trypsins and chymotrypsins in three orders of holometabolous insects and reveal divergent characteristics of Lepidoptera enzymes in comparison with those of Coleoptera and Diptera. In particular, trypsin subsite S1 was more hydrophilic in Lepidoptera than in Coleoptera and Diptera, whereas subsites S2-S4 were more hydrophobic, suggesting different substrate preferences. Furthermore, Lepidoptera displayed a lineage-specific trypsin group belonging only to the Noctuidae family. Evidence for facilitated trypsin auto-activation events were also observed in all the insect orders studied, with the characteristic zymogen activation motif complementary to the trypsin active site. In contrast, insect chymotrypsins did not seem to have a peculiar evolutionary history with respect to their mammal counterparts. Overall, our findings suggest that the need for fast digestion allowed holometabolous insects to evolve divergent groups of peptidases with high auto-activation rates, and highlight that the evolution of trypsins led to a most diverse group of enzymes in Lepidoptera.
Resumo:
Aspergillus niveus produced high levels of alpha-amylase and glucoamylase in submerged fermentation using the agricultural residue cassava peel as a carbon source. In static conditions, the amylase production was substantially greater than in the agitated condition. The optimized culture conditions were initially at pH 5.0, 35 degrees C during 48 hours. Amylolytic activity was still improved (50%) with a mixture of cassava peel and soluble starch in the proportion 1:1 (w/w). The crude extract exhibited temperature and pH optima approximately 70 degrees C and 4.5, respectively. Amylase activity was stable for 1 h at 60 degrees C, and at pH values between 3.0 and 7.0. The enzyme hydrolysed preferentially maltose, starch, penetrose, amylose, isomaltose, maltotriose, glycogen and amylopectin, and not hydrolysed cyclodextrin (alpha and beta), trehalose and sucrose. In the first hour of reaction on soluble starch, the hydrolysis products were glucose and maltose, but after two hours of hydrolysis, glucose was the unique product formed, confirming the presence in the crude extract of an alpha-amylase and a glucoamylase.
Resumo:
Fatty acid (FA) may disturb the redox state of the cells not only by an increase in reactive oxygen species (ROS) generation but also due to a reduction in antioxidant enzyme activities. The effect of various FAs (palmitic, stearic, oleic, linoleic, gamma-linolenic and eicosapentaenoic acids (EPAs)) on Jurkat and Raji cells, (human T and B leukaemic cell lines was investigated). The following measurements were carried out: FA composition of the cells, cell proliferation and activities of catalase, glutathione peroxidase (GPx) and superoxide dismutase (SOD). The protective effect of alpha-tocopherol on cell death was also investigated. Each cell line presented a specific FA composition. All the tested ENS reduced catalase activity. The toxic effect of FA was abolished by the pre-incubation with physiological concentrations of alpha-tocopherol. The findings support the proposition that the increase in oxidative stress induced by FA partially occurs due to a reduction in catalase activity. In spite of the decrease in the enzyme activity, catalase protein and mRNA levels were not changed, suggesting a post-translational regulation. Copyright (C) 2007 John Wiley & Sons, Ltd.