942 resultados para Enzyme Inhibitors -- pharmacology


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chagas` disease is a parasitic infection widely distributed throughout Latin America, with devastating consequences in terms of human morbidity and mortality. Cruzain, the major cysteine protease from Trypanosoma cruzi, is an attractive target for antitrypanosomal chemotherapy. In the present work, classical two-dimensional quantitative structure-activity relationships (2D QSAR) and hologram QSAR (HQSAR) studies were performed on a training set of 45 thiosemicarbazone and semicarbazone derivatives as inhibitors of T. cruzi cruzain. Significant statistical models (HQSAR, q2=0.75 and r2=0.96; classical QSAR, q2=0.72 and r2=0.83) were obtained, indicating their consistency for untested compounds. The models were then used to evaluate an external test set containing 10 compounds which were not included in the training set, and the predicted values were in good agreement with the experimental results (HQSAR, [image omitted]=0.95; classical QSAR, [image omitted]=0.91), indicating the existence of complementary between the two ligand-based drug design techniques.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cathepsin V is a lysosomal cysteine peptidase highly expressed in thymus, testis and corneal epithelium. Eleven acridone alkaloids were isolated from Swinglea glutinosa (Bl.) Merr. (Rutaceae), with eight of them being identified as potent and reversible inhibitors of cathepsin V (IC(50) values ranging from 1.2 to 3.9 mu M). Detailed mechanistic characterization of the effects of these compounds on the cathepsin V-catalyzed reaction showed clear competitive inhibition with respect to substrate, with dissociation constants (K(i)) in the low micromolar range (2, K(i) = 1.2 mu M; 6, K(i) = 1.0 mu M; 7, K(i) = 0.2 mu M; and 11, K(i) = 1.7 mu M). Molecular modeling studies provided important insight into the structural basis for binding affinity and enzyme inhibition. Experimental and computational approaches, including biological evaluation, mode of action assessment and modeling studies were successfully employed in the discovery of a small series of acridone alkaloid derivatives as competitive inhibitors of catV. The most potent inhibitor (7) has a K(i) value of 200 nM. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In renovascular hypertensive rats, low doses of angiotensin converting enzyme (ACE) inhibitors have been found to prevent myocardial hypertrophy independent of blood pressure level. This finding would suggest humoral rather than mechanical control of myocyte growth. The aim of this study was to examine the effect of nonantihypertensive doses of ACE inhibitor on myocardial hypertrophy and necrosis in hypertensive rats. Renovascular hypertension (RHT) was induced in four-week-old Wistar rats. Twenty-eight animals were treated for four weeks with three doses of ramipril (0.01, 0.1 or 1.0 mg/kg/day, which are unable to lower blood pressure. Fourteen animals were not treated (RHT group). A sham operated, age/sex-matched group was used as control (n=10). Myocardial histology was analysed in 3 μm thick sections of the ventricle stained with either haematoxylin-eosin, reticulin silver stain or Masson's trichrome. There was a significant correlation between systolic blood pressure and left ventricular to body weight ratio in both sets of animals: untreated plus controls and ramipril-treated rats. ACE inhibition prevented myocyte and perivascular necrosis and fibrosis in a dose-dependent manner. We conclude that myocardial hypertrophy in rats with renovascular hypertension is directly related to arterial pressure, and that this relationship is not affected by nonantihypertensive doses of ACE inhibitor. Myocardial necrosis/fibrosis and coronary artery damage induced by angiotensin II are prevented by ACE inhibitor in a dose-dependent manner, despite the presence of arterial hypertension.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effects of maternal exposure to aromatase inhibitor during the perinatal period of sexual brain differentiation were studied. The fertility was assessed in adult, male rat offspring of aromatase inhibitor-treated dams. The following results were obtained: (1) Sexual maturation, body weight, and wet weights of testis, pituitary, seminal vesicle, ventral prostate, and levatori ani muscle were unchanged at adult life. (2) Fifty percent of the animals were able to mate with normal females, which became pregnant but exhibited an increased number of preimplantation loss. (3) There was a decrease in the number of spermatozoa found in the testes and in the daily sperm production. (4) Of those, 25% of the male rats treated with aromatase inhibitor did not present male sexual behavior, showing female behavior when pretreated with estrogen. These results indicate that perinatal exposure to aromatase inhibitor during the critical period of male brain sexual differentiation has a long-term effect on the reproductive physiology and behavior of male rats.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PrTX-I, a non-catalytic and myotoxic Lys49-PLA(2) from Bothrops pirajai venom has been crystallized alone and in complex with bromophenacyl bromide (BPB), alpha-tocopherol and alpha-tocopherol acetate inhibitors. These crystals have shown to diffract X-rays between 2.34 and 1.65 angstrom resolution. All complexes crystals are isomorphous and belong to the space group P2(1) whereas native PrTX-I crystals belong to the P3(1)21.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present study we investigated the effects of central (i.c.v.) and subcutaneous (s.c.) injections of a 2 μg dose of lisinopryl, an inhibitor of angiotensin I(ANGI)-converting enzyme (CE), on water intake. I.c.v. but not s.c. injection of lisinopryl abolished drinking in response to s.c. isoprenaline (100 μg/kg) and significantly reduced drinking in response to 24 h water deprivation or s.c. polyethylene glycol (30% w/v, 10 ml/kg). Lisinopryl had no effect on water intake induced by cellular dehydration (s.c. injection of hypertonic saline (2 M NaCl)). These results are consistent with the hypothesis that lisinopryl acts as a CE blocking agent in the brain. The thirst challenge induced by hypotension using isoprenaline acts primarily by generating ANGII systemically and centrally. The other thirst challenges such as cellular dehydration are independent of the ANGII in the brain. This conclusion was made possible by utilizing a new CE blocking agent at a smaller dose than normally used for other ANG I-CE inhibitors. © 1992.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Angiotensin-converting enzyme inhibitors (ACEi) may downregulate matrix metalloproteinases (MMPs). We examined whether enalapril affects MMP-2, MMP-8, and MMP-9 levels and activity, and their endogenous inhibitors (tissue inhibitors of MMPs, TIMP-1 and TIMP-2) levels in hypertensive patients. Moreover, we assessed the effects of enalaprilat on MMP-9 and TIMP-1 secretion by human endothelial cells (HUVECs). Thirty-eight hypertensive patients received enalapril for 8 weeks and were compared with thirty-eight normotensive controls. Blood samples were collected at baseline and after treatment. Plasma ACE activity was determined by a fluorimetric assay. Plasma MMP-2, MMP-8, MMP-9, TIMP-1, and TIMP-2 were measured by ELISA and gelatin zymography. A fluorogenic peptide cleavage assay was used to measure MMP activity. HUVECs cells were stimulated by phorbol-12-myristate-13-acetate (PMA) and the effects of enalaprilat (10(-10) to 10(-6) M) on MMP-9 and TIMP-1 levels were determined. Enalapril decreased blood pressure and ACE activity in hypertensive patients (P < 0.05), but had no effects on plasma MMP-2, MMP-8, MMP-9, TIMP-1, and TIMP-2 levels, or MMP activity. Enalaprilat had no effects on PMA-induced increases in MMP-9 and TIMP-1 secretion by HUVECs or on MMP activity. We show consistent evidence, both in vivo and in vitro, that enalapril does not affect MMPs and TIMPs levels in hypertensive patients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This proof-of-concept study assessed whether the reduction of the degradation of the demineralized organic matrix (DOM) by pre-treatment with protease inhibitors (PI) is effective against dentin matrix loss. Bovine dentin slices were demineralized with 0.87 M citric acid, pH 2.3, for 36 hrs. In sequence, specimens were treated or not (UT, untreated) for 1 min with gels containing epigallocatechin 3-gallate (EGCG, 400 A mu M), chlorhexidine (CHX, 0.012%), FeSO4 (1 mM), NaF (1.23%), or no active compound (P, placebo). Specimens were then stored in artificial saliva (5 days, 37 degrees C) with the addition of collagenase (Clostridium histolyticum, 100 U/mL). We analyzed collagen degradation by assaying hydroxyproline (HYP) in the incubation solutions (n = 5) and evaluated the dentin matrix loss by profilometry (n = 12). Data were analyzed by ANOVA and Tukey's test (p < 0.05). Treatment with gels containing EGCG, CHX, or FeSO4 led to significantly lower HYP concentrations in solution and dentin matrix loss when compared with the other treatments. These results strongly suggest that the preventive effects of the PI tested against dentin erosion are due to their ability to reduce the degradation of the DOM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aims: Angiotensin-converting enzyme (ACE) inhibitors are used in diabetic kidney disease to reduce systemic/intra-glomerular pressure. The objective of this study was to investigate whether reducing blood pressure (BP) could modulate renal glucose transporter expression, and urinary markers of diabetic nephropathy in diabetic hypertensive rats treated with ramipril or amlodipine. Main methods: Diabetes was induced in spontaneously-hypertensive rats (~210 g) by streptozotocin (50 mg/kg). Thirty days later, animals received ramipril 15 μg/kg/day (R, n =10), or amlodipine 10 mg/kg/day (A, n= 8,) or water (C, n = 10) by gavage. After 30-day treatment, body weight, glycaemia, urinary albumin and TGF-β1 (enzyme-linked immunosorbent assay) and BP (tail-cuff pressure method) were evaluated. Kidneys were removed for evaluation of renal cortex glucose transporters (Western blotting) and renal tissue ACE activity (fluorometric assay). Key findings: After treatments, body weight (p = 0.77) and glycaemia (p = 0.22) were similar among the groups. Systolic BP was similarly reduced (p < 0.001) in A and R vs. C (172.4 ± 3.2; 186.7 ± 3.7 and 202.2 ± 4.3 mm Hg; respectively). ACE activity (C: 0.903 ± 0.086; A: 0.654 ± 0.025, and R: 0.389 ± 0.057 mU/mg), albuminuria (C: 264.8 ± 15.4; A: 140.8 ± 13.5 and R: 102.8 ± 6.7 mg/24 h), and renal cortex GLUT1 content (C: 46.81 ± 4.54; A: 40.30 ± 5.39 and R: 26.89 ± 0.79 AU) decreased only in R (p < 0.001, p < 0.05 and p < 0.001; respectively). Significance:We concluded that the blockade of the renin–angiotensin systemwith ramipril reduced earlymarkers of diabetic nephropathy, a phenomenon that cannot be specifically related to decreased BP levels.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mammalian members of the proton-coupled oligopeptide transporter family (SLC15) are integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs. The driving force for uphill electrogenic symport is the chemical gradient and membrane potential which favors proton uptake into the cell along with the peptide/mimetic substrate. The peptide transporters are responsible for the absorption and conservation of dietary protein digestion products in the intestine and kidney, respectively, and in maintaining homeostasis of neuropeptides in the brain. They are also responsible for the absorption and disposition of a number of pharmacologically important compounds including some aminocephalosporins, angiotensin-converting enzyme inhibitors, antiviral prodrugs, and others. In this review, we provide updated information on the structure-function of PepT1 (SLC15A1), PepT2 (SLC15A2), PhT1 (SLC15A4) and PhT2 (SLC15A3), and their expression and localization in key tissues. Moreover, mammalian peptide transporters are discussed in regard to pharmacogenomic and regulatory implications on host pharmacology and disease, and as potential targets for drug delivery. Significant emphasis is placed on the evolving role of these peptide transporters as elucidated by studies using genetically modified animals. Whenever possible, the relevance of drug-drug interactions and regulatory mechanisms are evaluated using in vivo studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aldosterone plays an important role in the pathophysiology of heart failure. Aldosterone receptor blockade has been shown to reduce morbidity and mortality in human patients with advanced congestive left ventricular heart failure. This study was designed to assess the efficacy and tolerance of long-term low-dose spironolactone when added to conventional heart failure treatment in dogs with advanced heart failure. Eighteen client-owned dogs with advanced congestive heart failure due to either degenerative valve disease (n=11) or dilated cardiomyopathy (n=7) were included in this prospective, placebo-controlled, double-blinded, randomized clinical study. After initial stabilization including furosemide, angiotensin-converting enzyme inhibitors, pimobendan and digoxin, spironolactone at a median dose of 0.52 mg/kg (range 0.49-0.8 mg/kg) once daily (n=9) or placebo (n=9) was added to the treatment, and the dogs were reassessed 3 and 6 months later. Clinical scoring, echocardiography, electrocardiogram, systolic blood pressure measurement, thoracic radiography, sodium, potassium, urea, creatinine, alanine aminotransferase, aldosterone and aminoterminal atrial natriuretic propeptide were assessed at baseline, 3 and 6 months. Survival times were not significantly different between the two treatment groups. Spironolactone was well tolerated when combined with conventional heart failure treatment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two important cytokines mediating inflammation are tumor necrosis factor α (TNFα) and IL-1β, both of which require conversion to soluble forms by converting enzymes. The importance of TNFα-converting enzyme and IL-1β-converting enzyme in the production of circulating TNFα and IL-1β in response to systemic challenges has been demonstrated by the use of specific converting enzyme inhibitors. Many inflammatory responses, however, are not systemic but instead are localized. In these situations release and/or activation of cytokines may be different from that seen in response to a systemic stimulus, particularly because associations of various cell populations in these foci allows for the exposure of procytokines to the proteolytic enzymes produced by activated neutrophils, neutrophil elastase (NE), proteinase 3 (PR3), and cathepsin G (Cat G). To investigate the possibility of alternative processing of TNFα and/or IL-1β by neutrophil-derived proteinases, immunoreactive TNFα and IL-1β release from lipopolysaccharide-stimulated THP-1 cells was measured in the presence of activated human neutrophils. Under these conditions, TNFα and IL-1β release was augmented 2- to 5-fold. In the presence of a specific inhibitor of NE and PR3, enhanced release of both cytokines was largely abolished; however, in the presence of a NE and Cat G selective inhibitor, secretory leucocyte proteinase inhibitor, reduction of the enhanced release was minimal. This finding suggested that the augmented release was attributable to PR3 but not NE nor Cat G. Use of purified enzymes confirmed this conclusion. These results indicate that there may be alternative pathways for the production of these two proinflammatory cytokines, particularly in the context of local inflammatory processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1 On rat isolated pulmonary arteries, vasorelaxation by S-nitrosocaptopril (SNOcap) was compared with S-nitrosoglutathione (GSNO) and nitroprusside, and inhibition by SNOcap of contractions to angiotensin I was compared with the angiotensin converting enzyme (ACE) inhibitor, captopril. 2 SNOcap was equipotent as a vasorelaxant on main (i.d. 2-3 mm) and intralobar (i.d. 600 mum)pulmonary arteries (pIC(50) values: 5.00 and 4.85, respectively). Vasorelaxant responses reached equilibrium rapidly (2-3 min). 3 Pulmonary vasorelaxant responses to SNOcap, like GSNO, were (i) partially inhibited by the soluble guanylate cyclase inhibitor, ODQ (1H-(1,2,4) oxadiazolo(4,3-a)-quinoxalin-1-one; 3 muM) whereas responses to nitroprusside were abolished and (ii) potentiated by hydroxocobalamin (HCOB; NO. free radical scavenger; 100 muM) whereas responses to nitroprusside were inhibited. 4 The relative potencies for pulmonary vasorelaxation compared with inhibition of platelet aggregation were: SNOcap 7: 1; GSNO 25: 1; nitroprusside > 2000:1. 5 SNOcap, like captopril, concentration-dependently and time-dependently increased the EC50 for angiotensin I but not angiotensin II. The dependence on incubation time was independent of the presence of tissue but differed for SNOcap and captopril. This difference reflected the slow dissociation of SNOcap and instability of captopril, and precluded a valid comparison of the potency of the two drugs. After prolonged incubation (greater than or equal to 5.6 h) SNOcap was more effective than captopril. 6 Thus, in pulmonary arteries SNOcap (i) possesses NO donor properties characteristic of S-nitrosothiols but different from nitroprusside and (ii) inhibits ACE at least as effectively as captopril. These properties suggest that SNOcap could be valuable in the treatment of pulmonary hypertension.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Angiotensin converting enzyme inhibitors (ACEI) have been proven beneficial to the cardiac-compromised patient, but whether there is an advantage associated with using a tissue-active or systemically-active ACEI is debatable. An investigation into the clinical benefits of tissue ACEI for veterinary patients was undertaken by comparing enalapril with ramipril. Results obtained concluded that although there is much evidence to prove that tissue ACEIs are superior over systemic ACEIs at the cellular level, this does not correlate in the clinical sense. Both enalapril and ramipril provided similar clinical benefits to the cardiac-compromised patient.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A major problem in de novo design of enzyme inhibitors is the unpredictability of the induced fit, with the shape of both ligand and enzyme changing cooperatively and unpredictably in response to subtle structural changes within a ligand. We have investigated the possibility of dampening the induced fit by using a constrained template as a replacement for adjoining segments of a ligand. The template preorganizes the ligand structure, thereby organizing the local enzyme environment. To test this approach, we used templates consisting of constrained cyclic tripeptides, formed through side chain to main chain linkages, as structural mimics of the protease-bound extended beta-strand conformation of three adjoining amino acid residues at the N- or C-terminal sides of the scissile bond of substrates. The macrocyclic templates were derivatized to a range of 30 structurally diverse molecules via focused combinatorial variation of nonpeptidic appendages incorporating a hydroxyethylamine transition-state isostere. Most compounds in the library were potent inhibitors of the test protease (HIV-1 protease). Comparison of crystal structures for five protease-inhibitor complexes containing an N-terminal macrocycle and three protease-inhibitor complexes containing a C-terminal macrocycle establishes that the macrocycles fix their surrounding enzyme environment, thereby permitting independent variation of acyclic inhibitor components with only local disturbances to the protease. In this way, the location in the protease of various acyclic fragments on either side of the macrocyclic template can be accurately predicted. This type of templating strategy minimizes the problem of induced fit, reducing unpredictable cooperative effects in one inhibitor region caused by changes to adjacent enzyme-inhibitor interactions. This idea might be exploited in template-based approaches to inhibitors of other proteases, where a beta-strand mimetic is also required for recognition, and also other protein-binding ligands where different templates may be more appropriate.