991 resultados para Enzymatic characterization


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A phospholipase A(2) (PLA(2)) called jerdoxin, was isolated from Trimeresurus jerdonni snake venom and partially characterized. The protein was purified by three chromatographic steps. SDS-polyacrylamide gel electrophoresis in the presence or absence of dithiothreitol showed that it had a molecular mass of 15 kDa. Jerdoxin had an enzymatic activity of 39.4 mumol/min/mg towards egg yolk phosphatidyl choline (PC). It induced edema in the footpads of mice. In addition, jerdoxin exhibited indirect hemolytic activity. About 97% hemolysis was observed when 2 mug/ml enzyme was incubated for 90 min in the presence of PC and Ca2+. No detectable hemolysis was noticed when PC was not added. Ca2+ was necessary for jerdoxin to exert its hemolytic activity, since only 52% hemolysis was seen when Ca2+ was absent in the reaction mixture. Furthermore, jerdoxin inhibited ADP induced rabbit platelet aggregation and the inhibition was dose dependent with an IC50 of 1.0 muM. The complete amino acid sequence of jerdoxin deduced from cDNA sequence shared high homology with other snake venom PLA(2)s, especially the D49 PLA(2)s. Also, the residues concerned to Ca2+ binding were conserved. This is the first report of cDNA sequence of T jerdonii venom PLA(2). (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Capillary electrophoresis with electrochemiluminescene detection was used to characterize procaine hydrolysis as a probe for butyrylcholinesterase by in vitro procaine metabolism in plasma with butyrylcholinesterase acting as bioscavenger. Procaine and its metabolite N,N-diethylethanolamine were separated at 16 kV and then detected at 1.25 V in the presence of 5.0 mM Ru(bpy)(3)(2+), with the detection limits of 2.4 x 10(-7) and 2.0 x 10(-8) mol/L (S/N=3), respectively. The Michaelis constant K-m value was 1.73 x 10(-4) mol/L and the maximum velocity V-max was 1.62 x 10(-6) mol/L/min. Acetylcholine bromide and choline chloride presented inhibition effects on the enzymatic cleavage of procaine, with the 50% inhibition concentration (IC50) of 6.24 x 10(-3) and 2.94 x 10(-4) mol/L.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method for prolidase (PLD, EC 3.4.13.9) activity assay was developed based on the determination of proline produced from enzymatic reaction through capillary electrophoresis (CE) with tris(2,2'-bipyridyl)ruthenium(11) [Ru(bpy)(3)(2+)] electrochemiluminescence detection (ECL). A detection limit of 12.2 fmol (S/N = 3) for proline, corresponding to 1.22 x 10(-8) units of prolidase catalyzing for 1 min was achieved. PLD activity determined by CE-ECL method was in agreement with that obtained from the classical Chinard's one. CE-ECL showed its powerful resolving ability and selectivity as no sample pretreatmentwas needed and no interference existed. The clinical utility of this method was successfully demonstrated by its application to assay PLD activity in the serum of diabetic patients in order to evaluate collagen degradation in diabetes mellitus (DM). The results indicated that enhanced collagen degradation occurred in DM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IntroductionConventional polymers such as polyethyleneand polypropylene persistfor many years after landdisposal.Furthermore,plastics are often soiled byfood and other biological substances,making phys-ical recycling of those materials impractical andgenerally undesirable. In contrast,biodegradablepolymers disposed in bioactive environment are de-graded by the enzymatic action of microorganismssuch as bacteria,fungi,and algae.The worldwideconsumption of biodegradable polymers increasedfrom1.4×107kg in ...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Triblock copolymer PCL-PEG-PCL was prepared by ring-opening polymerization of epsilon-caprolactone (CL) in the presence of poly(ethylene glycol) catalyzed by calcium ammoniate at 60 degreesC in xylene solution. The copolymer composition and triblock structure were confirmed by H-1 NMR and C-13 WR measurements. The differential scanning calorimetry and wide-angle X-ray diffraction analyses revealed the micro-domain structure in the copolymer. The melting temperature T-c and crystallization temperature T-c of the PEG domain were influenced by the relative length of the PCL blocks. This was caused by the strong covalent interconnection between the two domains. Aqueous micelles were prepared from the triblock copolymer. The critical micelle concentration was determined to be 0.4-1.2 mg/l by fluorescence technique using pyrene as probe, depending on the length of PCL blocks, and lower than that of corresponding PCL-PEG diblock copolymers. The H-1 NMR spectrum of the micelles in D2O demonstrated only the -CH2CH2O- signal and thus confirmed. the PCL-core/PEG-shell structure of the micelles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A gene, pfa1, encoding an autotransporter was cloned from a pathogenic Pseudomonas fluorescens strain, TSS, isolated from diseased fish. The expression of pfa1 is enhanced during infection and is regulated by growth phase and growth conditions. Mutation of pfa1 significantly attenuates the overall bacterial virulence of TSS and impairs the abilities of TSS in biofilm production, interaction with host cells, modulation of host immune responses, and dissemination in host blood. The putative protein encoded by pfa1 is 1,242 amino acids in length and characterized by the presence of three functional domains that are typical for autotransporters. The passenger domain of PfaI contains a putative serine protease (Pap) that exhibits apparent proteolytic activity when expressed in and purified from Escherichia coli as a recombinant protein. Consistent with the important role played by PfaI in bacterial virulence, purified recombinant Pap has a profound cytotoxic effect on cultured fish cells. Enzymatic analysis showed that recombinant Pap is relatively heat stable and has an optimal temperature and pH of 50 degrees C and pH 8.0. The domains of PfaI that are essential to autotransporting activity were localized, and on the basis of this, a PfaI-based autodisplay system (named AT1) was engineered to facilitate the insertion and transport of heterologous proteins. When expressed in E. coli, AT1 was able to deliver an integrated Edwardsiella tarda immunogen (Et18) onto the surface of bacterial cells. Compared to purified recombinant Et18, Et18 displayed by E. coli via AT1 induced significantly enhanced immunoprotection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vibrio harveyi is an important marine pathogen that can infect a number of aquaculture species. V. harveyi degQ (degQ(Vh)), the gene encoding a DegQ homologue, was cloned from T4, a pathogenic V. harveyi strain isolated from diseased fish. DegQ(Vh) was closely related to the HtrA family members identified in other Vibrio species and could complement the temperature-sensitive phenotype of an Escherichia coli strain defective in degP. Expression of degQVh in T4 was modulated by temperature, possibly through the sigma(E)-like factor. Enzymatic analyses demonstrated that the recombinant DegQVh protein expressed in and purified from E. coli was an active serine protease whose activity required the integrity of the catalytic site and the PDZ domains. The optimal temperature and pH of the recombinant DegQVh protein were 50 C and pH 8.0. A vaccination study indicated that the purified recombinant DegQVh was a protective immunogen that could confer protection upon fish against infection by V. harveyi. In order to improve the efficiency of DegQVh as a vaccine, a genetic construct in the form of the plasmid pAQ1 was built, in which the DNA encoding the processed DegQVh protein was fused with the DNA encoding the secretion region of AgaV, an extracellular beta-agarase. The E.coli strain harboring pAQ1 could express and secrete the chimeric DegQVh protein into the culture supernatant. Vaccination of fish with viable E. coli expressing chimeric degQ(Vh) significantly (P < 0.001) enhanced the survival of fish against V. harveyi challenge, which was possibly due to the relatively prolonged exposure of the immune system to the recombinant antigen produced constitutively, albeit at a gradually decreasing level, by the carrier strain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vibrio harveyi is an important marine pathogen that can infect a number of aquaculture species. V. harveyi degQ (degQ(Vh)), the gene encoding a DegQ homologue, was cloned from T4, a pathogenic V. harveyi strain isolated from diseased fish. DegQ(Vh) was closely related to the HtrA family members identified in other Vibrio species and could complement the temperature-sensitive phenotype of an Escherichia coli strain defective in degP. Expression of degQVh in T4 was modulated by temperature, possibly through the sigma(E)-like factor. Enzymatic analyses demonstrated that the recombinant DegQVh protein expressed in and purified from E. coli was an active serine protease whose activity required the integrity of the catalytic site and the PDZ domains. The optimal temperature and pH of the recombinant DegQVh protein were 50 C and pH 8.0. A vaccination study indicated that the purified recombinant DegQVh was a protective immunogen that could confer protection upon fish against infection by V. harveyi. In order to improve the efficiency of DegQVh as a vaccine, a genetic construct in the form of the plasmid pAQ1 was built, in which the DNA encoding the processed DegQVh protein was fused with the DNA encoding the secretion region of AgaV, an extracellular beta-agarase. The E.coli strain harboring pAQ1 could express and secrete the chimeric DegQVh protein into the culture supernatant. Vaccination of fish with viable E. coli expressing chimeric degQ(Vh) significantly (P < 0.001) enhanced the survival of fish against V. harveyi challenge, which was possibly due to the relatively prolonged exposure of the immune system to the recombinant antigen produced constitutively, albeit at a gradually decreasing level, by the carrier strain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monotopic membrane proteins are membrane proteins that interact with only one leaflet of the lipid bilayer and do not possess transmembrane spanning segments. They are endowed with important physiological functions but until now only few of them have been studied. Here we present a detailed biochemical, enzymatic and crystallographic characterization of the monotopic membrane protein sulfide:quinone oxidoreductase. Sulfide:quinone oxidoreductase is a ubiquitous enzyme involved in sulfide detoxification, in sulfide-dependent respiration and photosynthesis, and in heavy metal tolerance. It may also play a crucial role in mammals, including humans, because sulfide acts as a neurotransmitter in these organisms. We isolated and purified sulfide:quinone oxidoreductase from the native membranes of the hyperthermophilic bacterium Aquifex aeolicus. We studied the pure and solubilized enzyme by denaturing and non-denaturing polyacrylamide electrophoresis, size-exclusion chromatography, cross-linking, analytical ultracentrifugation, visible and ultraviolet spectroscopy, mass spectrometry and electron microscopy. Additionally, we report the characterization of its enzymatic activity before and after crystallization. Finally, we discuss the crystallization of sulfide:quinone oxidoreductase in respect to its membrane topology and we propose a classification of monotopic membrane protein crystal lattices. Our data support and complement an earlier description of the three-dimensional structure of A. aeolicus sulfide:quinone oxidoreductase (M. Marcia, U. Ermler, G. Peng, H. Michel, Proc Natl Acad Sci USA, 106 (2009) 9625-9630) and may serve as a reference for further studies on monotopic membrane proteins. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mature human interleukin-11 (HuIL-11) is a cytokine consisting of 178 amino acid residues that results from scission of the N-terminal signal peptide, consisting of 21 amino acid residaues, from the corresponding nascent polypeptide. A DNA fragment encoding a truncated HuIL-11 (trHuIL-11), with an additional 5 amino acid residues removed from the N-terminus, was cloned into vector pGEX-2T between the BamHI site and the EcoRI site. Upon transformation with Escherichia coli BL21, the construct over-produced a glutathione S-transferase (GST)-fused protein in a soluble form after IPTG induction. The fusion protein was initially fractionated with butyl-Sepharose 4 fast flow column and by affinity chromatography using a GSH-Sepharose 4B column. On-site enzymatic release with thrombin gave the target protein at 96% purity as judged by SDS-PAGE and HPLC. Expression of the interleukin as a GST-fused protein thus greatly improved downstream processing. Subsequent biological activity assay suggested that trHuIL-11 had similar activity profile to the naturally produced sample and may be a promising candidate for further development as biopharmaceutical.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concept of a biofuel cell takes inspiration from the natural capability of biological systems to catalyse the conversion of organic matter with a subsequent release of electrical energy. Enzymatic biofuel cells are intended to mimic the processes occurring in nature in a more controlled and efficient manner. Traditional fuel cells rely on the use of toxic catalysts and are often not easily miniaturizable making them unsuitable as implantable power sources. Biofuel cells however use highly selective protein catalysts and renewable fuels. As energy consumption becomes a global issue, they emerge as important tools for energy generation. The microfluidic platforms developed are intended to maximize the amount of electrical energy extracted from renewable fuels which are naturally abundant in the environment and in biological fluids. Combining microfabrication processes, chemical modification and biological surface patterning these devices are promising candidates for micro-power sources for future life science and electronic applications. This thesis considered four main aspects of a biofuel cell research. Firstly, concept of a miniature compartmentalized enzymatic biofuel cell utilizing simple fuels and operating in static conditions is verified and proves the feasibility of enzyme catalysis in energy conversion processes. Secondly, electrode and microfluidic channel study was performed through theoretical investigations of the flow and catalytic reactions which also improved understanding of the enzyme kinetics in the cell. Next, microfluidic devices were fabricated from cost-effective and disposable polymer materials, using the state-of-the-art micro-processing technologies. Integration of the individual components is difficult and multiple techniques to overcome these problems have been investigated. Electrochemical characterization of gold electrodes modified with Nanoporous Gold Structures is also performed. Finally, two strategies for enzyme patterning and encapsulation are discussed. Several protein catalysts have been effectively immobilized on the surface of commercial and microfabricated electrodes by electrochemically assisted deposition in sol-gel and poly-(o-phenylenediamine) polymer matrices and characterised with confirmed catalytic activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A modified experimental procedure for the synthesis of MESG (2-amino-6-mercapto-7-methylpurine ribonucleoside) 1 has been successfully performed and its full characterization is presented. High resolution ESI(+)-MSMS indicates both the nucleoside bond cleavage as the main fragmentation in the gas phase and a possible SN1 mechanism. Ab initio transition state calculations based on the blue print transition state support this mechanistic rationale and discard an alternative SN2 mechanism. Assays using purine nucleoside phosphorylase (PNP) enzyme (human and M. tuberculosis sources) indicate its efficiency in the phosphorolysis of MESG and allow the quantitative determination of inorganic phosphate in real time assay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Severe acute respiratory syndrome coronavirus (SARS-CoV), a newly identified group 2 coronavirus, is the causative agent of severe acute respiratory syndrome, a life-threatening form of pneumonia in humans. Coronavirus replication and transcription are highly specialized processes of cytoplasmic RNA synthesis that localize to virus-induced membrane structures and were recently proposed to involve a complex enzymatic machinery that, besides RNA-dependent RNA polymerase, helicase, and protease activities, also involves a series of RNA-processing enzymes that are not found in most other RNA virus families. Here, we characterized the enzymatic activities of a recombinant form of the SARS-CoV helicase (nonstructural protein [nsp] 13), a superfamily 1 helicase with an N-terminal zinc-binding domain. We report that nsp13 has both RNA and DNA duplex-unwinding activities. SARS-CoV nsp13 unwinds its substrates in a 5'-to-3' direction and features a remarkable processivity, allowing efficient strand separation of extended regions of double-stranded RNA and DNA. Characterization of the nsp13-associated (deoxy)nucleoside triphosphatase ([dNTPase) activities revealed that all natural nucleotides and deoxynucleotides are substrates of nsp13, with ATP, dATP, and GTP being hydrolyzed slightly more efficiently than other nucleotides. Furthermore, we established an RNA 5'-triphosphatase activity for the SARS-CoV nsp13 helicase which may be involved in the formation of the 5' cap structure of viral RNAs. The data suggest that the (d)NTPase and RNA 5'-triphosphatase activities of nsp13 have a common active site. Finally, we established that, in SARS-CoV-infected Vero E6 cells, nsp13 localizes to membranes that appear to be derived from the endoplasmic reticulum and are the likely site of SARS-CoV RNA synthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nidoviruses (arteriviruses, coronaviruses, and roniviruses) are a phylogenetically compact but diverse group of positive-strand RNA viruses that includes important human and animal pathogens. Nidovirus RNA synthesis is mediated by a cytoplasmic membrane-associated replication/transcription complex that includes up to 16 viral nonstructural proteins (nsps), which carry common enzymatic activities, like the viral RNA polymerase, but also unusual and poorly understood RNA-processing functions. Of these, a conserved endoribonuclease (NendoU) is a major genetic marker that is unique to nidoviruses. NendoU activity was previously verified in vitro for the coronavirus nsp15, but not for any of its distantly related orthologs from other nidovirus lineages, like the arterivirus nsp11. Here, we show that the bacterially expressed nsp11 proteins of two arteriviruses, equine arteritis virus and porcine respiratory and reproductive syndrome virus, possess pyrimidine-specific endoribonuclease activity. RNA cleavage was independent of divalent cations in vitro and was greatly reduced by replacement of residues previously implicated in catalysis. Comparative characterization of the NendoU activity in arteriviruses and severe acute respiratory syndrome coronavirus revealed common and distinct features of their substrate requirements and reaction mechanism. Our data provide the first biochemical evidence of endoribonuclease activity associated with arterivirus nsp11 and support the conclusion that this remarkable RNA-processing enzyme, whose substrate in the infected cell remains to be identified, distinguishes nidoviruses from all other RNA viruses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyisoprenyl-phosphate N-acetylaminosugar-1-phosphate transferases (PNPTs) constitute a family of eukaryotic and prokaryotic membrane proteins that catalyze the transfer of a sugar-1-phosphate to a phosphoisoprenyl lipid carrier. All PNPT members share a highly conserved 213-Valine-Phenylalanine-Methionine-Glycine-Aspartic acid-217 (VFMGD) motif. Previous studies using the MraY protein suggested that the aspartic acid residue in this motif, D267, is a nucleophile for a proposed double-displacement mechanism involving the cleavage of the phosphoanhydride bond of the nucleoside. Here, we demonstrate that the corresponding residue in the E. coli WecA, D217, is not directly involved in catalysis, as its replacement by asparagine results in a more active enzyme. Kinetic data indicate that the D217N replacement leads to more than twofold increase in V(max) without significant change in the K(m) for the nucleoside sugar substrate. Furthermore, no differences in the binding of the reaction intermediate analog tunicamycin were found in D217N as well as in other replacement mutants at the same position. We also found that alanine substitutions in various residues of the VFMGD motif affect to various degrees the enzymatic activity of WecA in vivo and in vitro. Together, our data suggest that the highly conserved VFMGD motif defines a common region in PNPT proteins that contributes to the active site and is likely involved in the release of the reaction product.