926 resultados para Environmental Sciences related to Agriculture and Land-use


Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the predominantly agricultural River Windrush catchment, spatial variations in concentrations of nitrogen species and suspended sediment were strongly related to geology and land use. Temporal patterns of NO3- and NO2- concentrations during the three year study were highly correlated with seasonal variations in baseflow. Suspended sediment concentrations were mainly controlled by storm discharge. Variations in total ammonium concentrations reflected both flow controls. Suspended sediment effects total ammonium and organic nitrogen transport to the aquatic system, and in-stream cycling processes. Organic nitrogen did not display consistent seasonal variations, but concentrations occasionally exceeding those of NO3-. Overall, NO3- and organic nitrogen were the most important at 60% and -40%, of total nitrogen load, respectively. Future assessments of agriculture impact on river water quality should consider the total nitrogen load, and not solely that of NO3-.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agriculture and food security are key sectors for intervention under climate change. Agricultural production is highly vulnerable even to 2C (low-end) predictions for global mean temperatures in 2100, with major implications for rural poverty and for both rural and urban food security. Agriculture also presents untapped opportunities for mitigation, given the large land area under crops and rangeland, and the additional mitigation potential of aquaculture. This paper presents a summary of current knowledge on options to support farmers, particularly smallholder farmers, in achieving food security through agriculture under climate change. Actions towards adaptation fall into two broad overlapping areas: (1) accelerated adaptation to progressive climate change over decadal time scales, for example integrated packages of technology, agronomy and policy options for farmers and food systems, and (2) better management of agricultural risks associated with increasing climate variability and extreme events, for example improved climate information services and safety nets. Maximization of agriculture’s mitigation potential will require investments in technological innovation and agricultural intensification linked to increased efficiency of inputs, and creation of incentives and monitoring systems that are inclusive of smallholder farmers. Food systems faced with climate change need urgent, broad-based action in spite of uncertainties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a palaeoecological investigation of pre-Columbian land use in the savannah “forest island” landscape of north-east Bolivian Amazonia. A 5700 year sediment core from La Luna Lake, located adjacent to the La Luna forest island site, was analysed for fossil pollen and charcoal. We aimed to determine the palaeoenvironmental context of pre-Columbian occupation on the site and assess the environmental impact of land use in the forest island region. Evidence for anthropogenic burning and Zea mays L. cultivation began ~2000 cal a BP, at a time when the island was covered by savannah, under drier-than-present climatic conditions. After ~1240 cal a BP burning declined and afforestation occurred. We show that construction of the ring ditch, which encircles the island, did not involve substantial deforestation. Previous estimates of pre-Columbian population size in this region, based upon labour required for forest clearance, should therefore be reconsidered. Despite the high density of economically useful plants, such as Theobroma cacao, in the modern forest, no direct pollen evidence for agroforestry was found. However, human occupation is shown to pre-date and span forest expansion on this site, suggesting that here, and in the wider forest island region, there is no truly pre-anthropogenic ‘pristine’ forest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Roads and topography can determine patterns of land use and distribution of forest cover, particularly in tropical regions. We evaluated how road density, land use, and topography affected forest fragmentation, deforestation and forest regrowth in a Brazilian Atlantic Forest region near the city of Sao Paulo. We mapped roads and land use/land cover for three years (1962, 1981 and 2000) from historical aerial photographs, and summarized the distribution of roads, land use/land cover and topography within a grid of 94 non-overlapping 100 ha squares. We used generalized least squares regression models for data analysis. Our models showed that forest fragmentation and deforestation depended on topography, land use and road density, whereas forest regrowth depended primarily on land use. However, the relationships between these variables and forest dynamics changed in the two studied periods; land use and slope were the strongest predictors from 1962 to 1981, and past (1962) road density and land use were the strongest predictors for the following period (1981-2000). Roads had the strongest relationship with deforestation and forest fragmentation when the expansions of agriculture and buildings were limited to already deforested areas, and when there was a rapid expansion of development, under influence of Sao Paulo city. Furthermore, the past(1962)road network was more important than the recent road network (1981) when explaining forest dynamics between 1981 and 2000, suggesting a long-term effect of roads. Roads are permanent scars on the landscape and facilitate deforestation and forest fragmentation due to increased accessibility and land valorization, which control land-use and land-cover dynamics. Topography directly affected deforestation, agriculture and road expansion, mainly between 1962 and 1981. Forest are thus in peril where there are more roads, and long-term conservation strategies should consider ways to mitigate roads as permanent landscape features and drivers facilitators of deforestation and forest fragmentation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forests near the Mediterranean coast have been shaped by millennia of human disturbance. Consequently, ecological studies relying on modern observations or historical records may have difficulty assessing natural vegetation dynamics under current and future climate. We combined a sedimentary pollen record from Lago di Massacciucoli, Tuscany, Italy with simulations from the LandClim dynamic vegetation model to determine what vegetation preceded intense human disturbance, how past changes in vegetation relate to fire and browsing, and the potential of an extinct vegetation type under present climate. We simulated vegetation dynamics near Lago di Massaciucoli for the last 7,000 years using a local chironomid-inferred temperature reconstruction with combinations of three fire regimes (small infrequent, large infrequent, small frequent) and three browsing intensities (no browsing, light browsing, and moderate browsing), and compared model output to pollen data. Simulations with low disturbance support pollen-inferred evidence for a mixed forest dominated by Quercus ilex (a Mediterranean species) and Abies alba (a montane species). Whereas pollen data record the collapse of A. alba after 6000 cal yr bp, simulated populations expanded with declining summer temperatures during the late Holocene. Simulations with increased fire and browsing are consistent with evidence for expansion by deciduous species after A. alba collapsed. According to our combined paleo-environmental and modeling evidence, mixed Q. ilex and A. alba forests remain possible with current climate and limited disturbance, and provide a viable management objective for ecosystems near the Mediterranean coast and in regions that are expected to experience a mediterranean-type climate in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Little is known about the vegetation and fire history of Sardinia, and especially the long-term history of the thermo-Mediterranean belt that encompasses its entire coastal lowlands. A new sedimentary record from a coastal lake based on pollen, spores, macrofossils and microscopic charcoal analysis is used to reconstruct the vegetation and fire history in north-eastern Sardinia. During the mid-Holocene (c. 8,100–5,300 cal bp), the vegetation around Stagno di Sa Curcurica was characterised by dense Erica scoparia and E. arborea stands, which were favoured by high fire activity. Fire incidence declined and evergreen broadleaved forests of Quercus ilex expanded at the beginning of the late Holocene. We relate the observed vegetation and fire dynamics to climatic change, specifically moister and cooler summers and drier and milder winters after 5,300 cal bp. Agricultural activities occurred since the Neolithic and intensified after c. 7,000 cal bp. Around 2,750 cal bp, a further decline of fire incidence and Erica communities occurred, while Quercus ilex expanded and open-land communities became more abundant. This vegetation shift coincided with the historically documented beginning of Phoenician period, which was followed by Punic and Roman civilizations in Sardinia. The vegetational change at around 2,750 cal bp was possibly advantaged by a further shift to moister and cooler summers and drier and milder winters. Triggers for climate changes at 5,300 and 2,750 cal bp may have been gradual, orbitally-induced changes in summer and winter insolation, as well as centennial-scale atmospheric reorganizations. Open evergreen broadleaved forests persisted until the twentieth century, when they were partly substituted by widespread artificial pine plantations. Our results imply that highly flammable Erica vegetation, as reconstructed for the mid-Holocene, could re-emerge as a dominant vegetation type due to increasing drought and fire, as anticipated under global change conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schwarzsee is located in the western Swiss Alps, in a region that has been affected by numerous landslides during the Holocene, as evidenced by geological surveys. Lacustrine sediments were cored to a depth of 13 m. The vegetation history of the lake's catchment was reconstructed and investigated to identify possible impacts on slope stability. The pollen analyses record development of forest cover during the middle and late Holocene, and provide strong evidence for regional anthropogenic influence such as forest clearing and agricultural activity. Vegetation change is characterized by continuous landscape denudation that begins at ca. 4300 cal. yrs BP, with five distinct pulses of increased deforestation, at 3650, 2700, 1500, 900, and 450 cal. yrs BP. Each pulse can be attributed to increased human impact, recorded by the appearance or increase of specific anthropogenic indicator plant taxa. These periods of intensified deforestation also appear to be correlated with increased landslide activity in the lake's catchment and increased turbidite frequency in the sediment record. Therefore, this study gives new evidence for a strong influence of vegetation changes on slope stability during the middle and late Holocene in the western Swiss Alps, and may be used as a case study for anthropogenically induced landslide activity.