928 resultados para Enumeration of bacteria


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strains of the Burkholderia cepacia complex (Bcc) are opportunistic bacteria that can cause life-threatening infections in patients with cystic fibrosis and chronic granulomatous disease. Previous work has shown that Bcc isolates can persist in membrane-bound vacuoles within amoeba and macrophages without bacterial replication, but the detailed mechanism of bacterial persistence is unknown. In this study, we have investigated the survival of the Burkholderia cenocepacia strain J2315 within RAW264.7 murine macrophages. Strain J2315 is a prototypic isolate of the widespread and transmissible ET12 clone. Unlike heat-inactivated bacteria, which reach lysosomes shortly after internalization, vacuoles containing live B. cenocepacia J2315 accumulate the late endosome/lysosome marker LAMP-1 and start fusing with lysosomal compartments only after 6 h post internalization. Using fluorescent fluid-phase probes, we also demonstrated that B. cenocepacia-containing vacuoles continued to interact with newly formed endosomes, and maintained a luminal pH of 6.4 +/- 0.12. In contrast, vacuoles containing heat-inactivated bacteria had an average pH of 4.8 +/- 0.03 and rapidly merged with lysosomes. Additional experiments using concanamycin A, a specific inhibitor of the vacuolar H+-ATPase, revealed that vacuoles containing live bacteria did not exclude the H+-ATPase. This mode of bacterial survival did not require type III secretion, as no differences were found between wild type and a type III secretion mutant strain. Collectively, our results suggest that intracellular B. cenocepacia cause a delay in the maturation of the phagosome, which may contribute to facilitate bacterial escape from the microbicidal activities of the host cell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is interest in determining levels of Mycobacterium avium subsp. paratuberculosis (MAP) contamination in milk. The optimal sample preparation for raw cows' milk to ensure accurate enumeration of viable MAP by the peptide-mediated magnetic separation (PMS)-phage assay was determined. Results indicated that milk samples should be refrigerated at 4 C after collection and MAP testing should commence within 24 h, or samples can be frozen at 70 C for up to one month without loss of MAP viability. Use of Bronopol is not advised as MAP viability is affected. The vast majority (>95%) of MAP in raw milk sedimented to the pellet upon centrifugation at 2500 g for 15 min, so this milk fraction should be tested. De-clumping of MAP cells was most effectively achieved by ultrasonication of the resuspended milk pellet on ice in a sonicator bath at 37 kHz for 4 min in ‘Pulse’ mode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role that bacterial factors play in determining how bacteria respond to photocatalytic degradation is becoming increasingly recognised. Fimbriae which are thin, proteinaceous cell surface structures produced by many enterobacteria are generally considered to be important bacterial virulence determinants in the host. Recent studies, however, suggest that their expression may be increased during times of environmental stress to protect them against factors such as nutrient depletion and oxidation. In this study bacteria were grown under defined culture conditions to promote the expression of type 1 fimbriae and subjected to photocatalytic treatment. Results showed that Escherichia coli grown under conditions to express type 1 fimbriae were more resistant to photocatalytic destruction than control cultures, taking 75 min longer to be destroyed. Curli fimbriae are also known to play a role in environmental protection of bacteria and they are associated with biofilm production. The ability of the E. coli strain to produce curli fimbriae was confirmed and biofilms were grown and subjected to photocatalytic treatment. Biofilm destruction by photocatalysis was assessed using a resazurin viability assay and a loss of cell viability was demonstrated within 30 min treatment time. This study suggests that intrinsic bacterial factors may play a role in determining an organism’s response to photocatalytic treatment and highlights their importance in this disinfection process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photodynamic inactivation (PDI) is defined as the process of cell destruction by oxidative stress resulting from the interaction between light and a photosensitizer (PS), in the presence of molecular oxygen. PDI of bacteria has been extensively studied in recent years, proving to be a promising alternative to conventional antimicrobial agents for the treatment of superficial and localized infections. Moreover, the applicability of PDI goes far beyond the clinical field, as its potential use in water disinfection, using PS immobilized on solid supports, is currently under study. The aim of the first part of this work was to study the oxidative modifications in phospholipids, nucleic acids and proteins of Escherichia coli and Staphylococcus warneri, subjected to photodynamic treatment with cationic porphyrins. The aims of the second part of the work were to study the efficiency of PDI in aquaculture water and the influence of different physicalchemical parameters in this process, using the Gram-negative bioluminescent bacterium Vibrio fischeri, and to evaluate the possibility of recycling cationic PS immobilized on magnetic nanoparticles. To study the oxidative changes in membrane phospholipids, a lipidomic approach has been used, combining chromatographic techniques and mass spectrometry. The FOX2 assay was used to determine the concentration of lipid hydroperoxides generated after treatment. The oxidative modifications in the proteins were analyzed by one-dimensional polyacrylamide gel electrophoresis (SDS-PAGE). Changes in the intracellular nucleic acids were analyzed by agarose gel electrophoresis and the concentration of doublestranded DNA was determined by fluorimetry. The oxidative changes of bacterial PDI at the molecular level were analyzed by infrared spectroscopy. In laboratory tests, bacteria (108 CFU mL-1) were irradiated with white light (4.0 mW cm-2) after incubation with the PS (Tri-Py+-Me-PF or Tetra-Py+-Me) at concentrations of 0.5 and 5.0 μM for S. warneri and E. coli, respectively. Bacteria were irradiated with different light doses (up to 9.6 J cm-2 for S. warneri and up to 64.8 J cm-2 for E. coli) and the changes were evaluated throughout the irradiation time. In the study of phospholipids, only the porphyrin Tri-Py+-Me-PF and a light dose of 64.8 J cm-2 were tested. The efficiency of PDI in aquaculture has been evaluated in two different conditions: in buffer solution, varying temperature, pH, salinity and oxygen concentration, and in aquaculture water samples, to reproduce the conditions of PDI in situ. The kinetics of the process was determined in realtime during the experiments by measuring the bioluminescence of V. fischeri (107 CFU mL-1, corresponding to a level of bioluminescence of 105 relative light units). A concentration of 5.0 μM of Tri-Py+-Me-PF was used in the experiments with buffer solution, and 10 to 50 μM in the experiments with aquaculture water. Artificial white light (4.0 mW cm-2) and solar irradiation (40 mW cm-2) were used as light sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the marine environment, phytoplankton and bacterioplankton can be physically associated. Such association has recently been hypothesized to be involved in the toxicity of the dinoflagellate genus Alexandrium. However, the methods, which have been used so far to identify, localize, and quantify bacteria associated with phytoplankton, are either destructive, time consuming, or lack precision. In the present study we combined tyramide signal amplification–fluorescent in situ hybridization (TSA-FISH) with confocal microscopy to determine the physical association of dinoflagellate cells with bacteria. Dinoflagellate attached microflora was successfully identified with TSA-FISH, whereas FISH using monolabeled probes failed to detect bacteria, because of the dinoflagellate autofluorescence. Bacteria attached to entire dinoflagellates were further localized and distinguished from those attached to empty theca, by using calcofluor and DAPI, two fluorochromes that stain dinoflagellate theca and DNA, respectively. The contribution of specific bacterial taxa of attached microflora was assessed by double hybridization. Endocytoplasmic and endonuclear bacteria were successfully identified in the nonthecate dinoflagellate Gyrodinium instriatum. In contrast, intracellular bacteria were not observed in either toxic or nontoxic strains of Alexandrium spp. Finally, the method was successfully tested on natural phytoplankton assemblages, suggesting that this combination of techniques could prove a useful tool for the simultaneous identification, localization, and quantification of bacteria physically associated with dinoflagellates and more generally with phytoplankton.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell immnhilizatinn technology in a rapidly expanding arna in the endeavour of microbial fnrmentatiwn.During the lnmt 15 years anveral prnceafinn have been developed and more are in developmental atage of approaching commercial utilizatinn.In the present programme it was planned to develop an optimized process for the innobilization of alpha amylase producing Bacillus polymyxa (CBTB 25) an isolate obtained from Cochin University campus primarily for the production of alpha-amylase.Optimal concentration of support material that attributaa stability and maximal activity to the immobilized cell beads was determined using different concentrations of sodium aliginate as support and estimation of amylase production.An overeall assessment of the data obtained for the various studies conducted denotes that immobilized cells synthesize alpha-amylase at comparable rates with free cells and produce reducing sugara at a higher level than free cells.Results indicated that both phosphate and citrate buffers could be used for disrupting the immobilized beads since they enforced maximal release of cells through leaching from the beads within one hour.On comparative analysis it was observed that immobilized cells could synthesize alpha amylase at similar levels with free cells of B.polymyxa.On Co-immobilization of B.Polymyxa with S.cerevisiae,the co-immobilizate beads could effeciently convert starch directly to ethanol with a yield of 14.8% at 1 : 2 ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis is Studies on the Effect or the Obganophosphorus Pesticide Ekalux(R) EC 25 on the Bacterial Flora or Villorita Cyprinoides Var.Cochinensis (Hanley). For the present investigation, the black clam Villorita gyprinoides var. cochinensis (Hanley), a most common clam genus present in this estuarine system has been selected as test organaism and Ekalux (R) EC 25 as toxicant. The aspects dealt with are 1. Total heterotrophic bacterial population, 2. Generic composition, 3. Hydrolytic enzyme producing bacteria, 4. Antibiotic resistance, 5. Heavy metal resistance, 6. The effect of pesticide concentration on the growth of the bacteria and 7. Effect of temperature, pH and sodium chloride on the growth and phosphate release of selected isolates.The samples for the experiment were collected from the Vembanad Lake, near Kumbalam Island during the period of September 1985 to May '86. The THB of the estuarine water and clams contained 6.5 x I04/ml and 2.975 x l06/g respectively, immediately after collection. Untreated water and clam samples showed enormous increase in THB from 0 hr population. The treated samples (water and clams) contained higher THB than 0 hr. In general, THB was observed to increase tremendously in the samples treated with pesticide when compared to their native flora. With reference to various concentrations of pesticides, THB recorded an increase with increase of concentration in water and clam samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work a new method for clustering and building a topographic representation of a bacteria taxonomy is presented. The method is based on the analysis of stable parts of the genome, the so-called “housekeeping genes”. The proposed method generates topographic maps of the bacteria taxonomy, where relations among different type strains can be visually inspected and verified. Two well known DNA alignement algorithms are applied to the genomic sequences. Topographic maps are optimized to represent the similarity among the sequences according to their evolutionary distances. The experimental analysis is carried out on 147 type strains of the Gammaprotebacteria class by means of the 16S rRNA housekeeping gene. Complete sequences of the gene have been retrieved from the NCBI public database. In the experimental tests the maps show clusters of homologous type strains and present some singular cases potentially due to incorrect classification or erroneous annotations in the database.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combined mathematical model for predicting heat penetration and microbial inactivation in a solid body heated by conduction was tested experimentally by inoculating agar cylinders with Salmonella typhimurium or Enterococcus faecium and heating in a water bath. Regions of growth where bacteria had survived after heating were measured by image analysis and compared with model predictions. Visualisation of the regions of growth was improved by incorporating chromogenic metabolic indicators into the agar. Preliminary tests established that the model performed satisfactorily with both test organisms and with cylinders of different diameter. The model was then used in simulation studies in which the parameters D, z, inoculum size, cylinder diameter and heating temperature were systematically varied. These simulations showed that the biological variables D, z and inoculum size had a relatively small effect on the time needed to eliminate bacteria at the cylinder axis in comparison with the physical variables heating temperature and cylinder diameter, which had a much greater relative effect. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lactoperoxidase (LP) exerts antimicrobial effects in combination with H2O2 and either thiocyanate (SCN-) or a halide (e. g., I-). Garlic extract in the presence of ethanol has also been used to activate the LP system. This study aimed to determine the effects of 3 LP activation systems (LP+SCN-+H2O2; LP+I-+H2O2; LP + garlic extract + ethanol) on the growth and activity of 3 test organisms (Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus cereus). Sterilized milk was used as the reaction medium, and the growth pattern of the organisms and a range of keeping quality (KQ) indicators (pH, titratable acidity, ethanol stability, clot on boiling) were monitored during storage at the respective optimum growth temperature for each organism. The LP+I-+H2O2 system reduced bacterial counts below the detection limit shortly after treatment for all 3 organisms, and no bacteria could be detected for the duration of the experiment (35 to 55 h). The KQ data confirmed that the milk remained unspoiled at the end of the experiments. The LP + garlic extract + ethanol system, on the other hand, had no effect on the growth or KQ with P. aeruginosa, but showed a small retardation of growth of the other 2 organisms, accompanied by small increases (5 to 10 h) in KQ. The effects of the LP+SCN-+H2O2 system were intermediate between those of the other 2 systems and differed between organisms. With P. aeruginosa, the system exerted total inhibition within 10 h of incubation, but the bacteria regained viability after a further 5 h, following a logarithmic growth curve. This was reflected in the KQ indicators, which implied an extension of 15 h. With the other 2 bacterial species, LP+SCN-+H2O2 exerted an obvious inhibitory effect, giving a lag phase in the growth curve of 5 to 10 h and KQ extension of 10 to 15 h. When used in combination, I- and SCN- displayed negative synergy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ulcerative colitis is a severe, relapsing and remitting disease of the human large intestine characterised by inflammation of the mucosa and submucosa. The main site of disease is the sigmoid/rectal region of the large bowel but the aetiology remains unknown. There is considerable evidence to indicate that the components of the resident colonic microflora can play an important role in initiation of the disease. The present study was aimed at characterising the faecal microflora of ulcerative colitis patients in remission and active phases to determine profile differences. Faecal samples were obtained from 12 patients, 6 with active colitis and 6 in remission. The samples were analysed for populations of lactobacilli, bifidobacteria, clostridia, bacteroides, sulphate-reducing bacteria (SRB) and total bacteria using culture independent fluorescence in situ hybridisation (FISH). Lactobacillus-specific denaturing gradient gel electrophoresis (DGGE) was then performed to compare the species present. Numbers of lactobacilli were significantly lower (p<0.05) during the active phase of the disease but the other populations tested did not differ. DGGE analysis revealed that Lactobacillus salivarus, Lactobacillus manihotivorans and Pediococcus acidilactici were present in remission, but not during active inflammation. These results imply that a reduction in intestinal Lactobacillus species may be important in the initiation of ulcerative colitis.