889 resultados para Engineering design
Resumo:
Pós-graduação em Design - FAAC
Resumo:
The elimination of all external incisions is an important step in reducing the invasiveness of surgical procedures. Natural Orifice Translumenal Endoscopic Surgery (NOTES) is an incision-less surgery and provides explicit benefits such as reducing patient trauma and shortening recovery time. However, technological difficulties impede the widespread utilization of the NOTES method. A novel robotic tool has been developed, which makes NOTES procedures feasible by using multiple interchangeable tool tips. The robotic tool has the capability of entering the body cavity through an orifice or a single incision using a flexible articulated positioning mechanism and once inserted is not constrained by incisions, allowing for visualization and manipulations throughout the cavity. Multiple interchangeable tool tips of the robotic device initially consist of three end effectors: a grasper, scissors, and an atraumatic Babcock clamp. The tool changer is capable of selecting and switching between the three tools depending on the surgical task using a miniature mechanism driven by micro-motors. The robotic tool is remotely controlled through a joystick and computer interface. In this thesis, the following aspects of this robotic tool will be detailed. The first-generation robot is designed as a conceptual model for implementing a novel mechanism of switching, advancing, and controlling the tool tips using two micro-motors. It is believed that this mechanism achieves a reduction in cumbersome instrument exchanges and can reduce overall procedure time and the risk of inadvertent tissue trauma during exchanges with a natural orifice approach. Also, placing actuators directly at the surgical site enables the robot to generate sufficient force to operate effectively. Mounting the multifunctional robot on the distal end of an articulating tube provides freedom from restriction on the robot kinematics and helps solve some of the difficulties otherwise faced during surgery using NOTES or related approaches. The second-generation multifunctional robot is then introduced in which the overall size is reduced and two arms provide 2 additional degrees of freedom, resulting in feasibility of insertion through the esophagus and increased dexterity. Improvements are necessary in future iterations of the multifunctional robot; however, the work presented is a proof of concept for NOTES robots capable of abdominal surgical interventions.
Resumo:
The present dissertation relates to methodologies and technics about industrial and mechanical design. The author intends to give a complete idea about the world of design, showing the theories of Quality Function Deployment and TRIZ, of other methods just like planning, budgeting, Value Analysis and Engineering, Concurrent Engineering, Design for Assembly and Manufactoring, etc., and their applications to five concrete cases. In these cases there are also illustrated design technics as CAD, CAS, CAM; Rendering, which are ways to transform an idea into reality. The most important object of the work is, however, the birth of a new methodology, coming up from a comparison between QFD and TRIZ and their integration through other methodologies, just like Time and Cost Analysis, learned and skilled during an important experience in a very famous Italian automotive factory.
Resumo:
A new liquid-fuel injector was designed for use in the atmospheric-pressure, model gas turbine combustor in Bucknell University’s Combustion Research Laboratory during alternative fuel testing. The current liquid-fuel injector requires a higher-than-desired pressure drop and volumetric flow rate to provide proper atomization of liquid fuels. An air-blast atomizer type of fuel injector was chosen and an experiment utilizing water as the working fluid was performed on a variable-geometry prototype. Visualization of the spray pattern was achieved through photography and the pressure drop was measured as a function of the required operating parameters. Experimental correlations were used to estimate droplet sizes over flow conditions similar to that which would be experienced in the actual combustor. The results of this experiment were used to select the desired geometric parameters for the proposed final injector design and a CAD model was generated. Eventually, the new injector will be fabricated and tested to provide final validation of the design prior to use in the combustion test apparatus.
Resumo:
An atmospheric combustion apparatus was designed through several iterations for Bucknell University's combustion laboratory. The final design required extensive fine-tuning of the fuel and air systems and repeated tests to arrive at a satisfactory procedure to transfer from gaseous to liquid fuel operation. Measurement of exhaust emissions were obtained under tests of gaseous methane and liquid heptane were operation in order to validate the functionality of the combustion apparatus, the fuel transition procedure, and emissions analyzer systems. The emission concentrations of CO, CO2, NOx, 02, S02, and unburned hydrocarbons from a multianalyzer and HFID analyzer were obtained for a range of equivalence ratios. The results verify the potential for future alternative fuel tests and illuminate necessary alterations for further liquid fuel studies.
Resumo:
Protein scaffolds that support molecular recognition have multiple applications in biotechnology. Thus, protein frames with robust structural cores but adaptable surface loops are in continued demand. Recently, notable progress has been made in the characterization of Ig domains of intracellular origin--in particular, modular components of the titin myofilament. These Ig belong to the I(intermediate)-type, are remarkably stable, highly soluble and undemanding to produce in the cytoplasm of Escherichia coli. Using the Z1 domain from titin as representative, we show that the I-Ig fold tolerates the drastic diversification of its CD loop, constituting an effective peptide display system. We examine the stability of CD-loop-grafted Z1-peptide chimeras using differential scanning fluorimetry, Fourier transform infrared spectroscopy and nuclear magnetic resonance and demonstrate that the introduction of bioreactive affinity binders in this position does not compromise the structural integrity of the domain. Further, the binding efficiency of the exogenous peptide sequences in Z1 is analyzed using pull-down assays and isothermal titration calorimetry. We show that an internally grafted, affinity FLAG tag is functional within the context of the fold, interacting with the anti-FLAG M2 antibody in solution and in affinity gel. Together, these data reveal the potential of the intracellular Ig scaffold for targeted functionalization.
Resumo:
Petroleum supply and environmental pollution issues constantly increase interest in renewable low polluting alternative fuels. Published test results show decreased pollution with similar power output and fuel consumption from Internal Combustion Engines (ICE) burning alternative fuels. More specifically, diesel engines burning biodiesel derived from plant oils and animal fats not only reduce harmful exhaust emissions but are renewable and environmentally friendly. To validate these claims and assess the feasibility of alternative fuels, independent engine dynamometer and emissions testing was performed. A testing apparatus capable of making relevant measurements was designed, built, and used to test and determine the feasibility of biodiesel. The apparatus marks the addition of a valuable testing tool to the University and provides a foundation for future experiments. This thesis will discuss the background of biodiesel, testing methods, design and function of the testing apparatus, experimental results, relevant calculations, and conclusions.
Resumo:
Utilization of biogas can provide a source of renewable energy in both heat and power generation. Combustion of biogas in land-based gas turbines for power generation is a promising approach to reducing greenhouse gases and US dependence on foreign-source fossil fuels. Biogas is a byproduct from the decomposition of organic matter and consists primarily of CH4 and large amounts of CO2. The focus of this research was to design a combustion device and investigate the effects of increasing levels of CO2 addition to the combustion of pure CH4 with air. Using an atmospheric-pressure, swirl-stabilized dump combustor, emissions data and flame stability limitations were measured and analyzed. In particular, CO2, CO, and NOx emissions were the main focus of the combustion products. Additionally, the occurrence of lean blowout and combustion pressure oscillations, which impose significant limitations in operation ranges for actual gas turbines, was observed. Preliminary kinetic and equilibrium modeling was performed using Cantera and CEA for the CH4/CO2/Air combustion systems to analyze the effect of CO2 upon adiabatic flame temperature and emission levels. The numerical and experimental results show similar dependence of emissions on equivalence ratio, CO2 addition, inlet air temperature, and combustor residence time. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Though 3D computer graphics has seen tremendous advancement in the past two decades, most available mechanisms for computer interaction in 3D are high cost and targeted for industry and virtual reality applications. Recent advances in Micro-Electro-Mechanical-System (MEMS) devices have brought forth a variety of new low-cost, low-power, miniature sensors with high accuracy, which are well suited for hand-held devices. In this work a novel design for a 3D computer game controller using inertial sensors is proposed, and a prototype device based on this design is implemented. The design incorporates MEMS accelerometers and gyroscopes from Analog Devices to measure the three components of the acceleration and angular velocity. From these sensor readings, the position and orientation of the hand-held compartment can be calculated using numerical methods. The implemented prototype is utilizes a USB 2.0 compliant interface for power and communication with the host system. A Microchip dsPIC microcontroller is used in the design. This microcontroller integrates the analog to digital converters, the program memory flash, as well as the core processor, on a single integrated circuit. A PC running Microsoft Windows operating system is used as the host machine. Prototype firmware for the microcontroller is developed and tested to establish the communication between the design and the host, and perform the data acquisition and initial filtering of the sensor data. A PC front-end application with a graphical interface is developed to communicate with the device, and allow real-time visualization of the acquired data.
Resumo:
The Environmental Process and Simulation Center (EPSC) at Michigan Technological University started accommodating laboratories for an Environmental Engineering senior level class CEE 4509 Environmental Process and Simulation Laboratory since 2004. Even though the five units that exist in EPSC provide the students opportunities to have hands-on experiences with a wide range of water/wastewater treatment technologies, a key module was still missing for the student to experience a full cycle of treatment. This project fabricated a direct-filtration pilot system in EPSC and generated a laboratory manual for education purpose. Engineering applications such as clean bed head loss calculation, backwash flowrate determination, multimedia density calculation and run length prediction are included in the laboratory manual. The system was tested for one semester and modifications have been made both to the direct filtration unit and the laboratory manual. Future work is also proposed to further refine the module.
Resumo:
With energy demands and costs growing every day, the need for improving energy efficiency in electrical devices has become very important. Research into various methods of improving efficiency for all electrical components will be a key to meet future energy needs. This report documents the design, construction, and testing of a research quality electric machine dynamometer and test bed. This test cell system can be used for research in several areas including: electric drives systems, electric vehicle propulsion systems, power electronic converters, load/source element in an AC Microgrid, as well as many others. The test cell design criteria, and decisions, will be discussed in reference to user functionality and flexibility. The individual power components will be discussed in detail to how they relate to the project, highlighting any feature used in operation of the test cell. A project timeline will be discussed, clearly stating the work done by the different individuals involved in the project. In addition, the system will be parameterized and benchmark data will be used to provide the functional operation of the system. With energy demands and costs growing every day, the need for improving energy efficiency in electrical devices has become very important. Research into various methods of improving efficiency for all electrical components will be a key to meet future energy needs. This report documents the design, construction, and testing of a research quality electric machine dynamometer and test bed. This test cell system can be used for research in several areas including: electric drives systems, electric vehicle propulsion systems, power electronic converters, load/source element in an AC Microgrid, as well as many others. The test cell design criteria, and decisions, will be discussed in reference to user functionality and flexibility. The individual power components will be discussed in detail to how they relate to the project, highlighting any feature used in operation of the test cell. A project timeline will be discussed, clearly stating the work done by the different individuals involved in the project. In addition, the system will be parameterized and benchmark data will be used to provide the functional operation of the system.
Resumo:
Building energy meter network, based on per-appliance monitoring system, willbe an important part of the Advanced Metering Infrastructure. Two key issues exist for designing such networks. One is the network structure to be used. The other is the implementation of the network structure on a large amount of small low power devices, and the maintenance of high quality communication when the devices have electric connection with high voltage AC line. The recent advancement of low-power wireless communication makes itself the right candidate for house and building energy network. Among all kinds of wireless solutions, the low speed but highly reliable 802.15.4 radio has been chosen in this design. While many network-layer solutions have been provided on top of 802.15.4, an IPv6 based method is used in this design. 6LOWPAN is the particular protocol which adapts IP on low power personal network radio. In order to extend the network into building area without, a specific network layer routing mechanism-RPL, is included in this design. The fundamental unit of the building energy monitoring system is a smart wall plug. It is consisted of an electricity energy meter, a RF communication module and a low power CPU. The real challenge for designing such a device is its network firmware. In this design, IPv6 is implemented through Contiki operation system. Customize hardware driver and meter application program have been developed on top of the Contiki OS. Some experiments have been done, in order to prove the network ability of this system.
Resumo:
Gas sensors have been used widely in different important area including industrial control, environmental monitoring, counter-terrorism and chemical production. Micro-fabrication offers a promising way to achieve sensitive and inexpensive gas sensors. Over the years, various MEMS gas sensors have been investigated and fabricated. One significant type of MEMS gas sensors is based on mass change detection and the integration with specific polymer. This dissertation aims to make contributions to the design and fabrication of MEMS resonant mass sensors with capacitance actuation and sensing that lead to improved sensitivity. To accomplish this goal, the research has several objectives: (1) Define an effective measure for evaluating the sensitivity of resonant mass devices; (2) Model the effects of air damping on microcantilevers and validate models using laser measurement system (3) Develop design guidelines for improving sensitivity in the presence of air damping; (4) Characterize the degree of uncertainty in performance arising from fabrication variation for one or more process sequences, and establish design guidelines for improved robustness. Work has been completed toward these objectives. An evaluation measure has been developed and compared to an RMS based measure. Analytic models of air damping for parallel plate that include holes are compared with a COMSOL model. The models have been used to identify cantilever design parameters that maximize sensitivity. Additional designs have been modeled with COMSOL and the development of an analytical model for Fixed-free cantilever geometries with holes has been developed. Two process flows have been implemented and compared. A number of cantilever designs have been fabricated and the uncertainty in process has been investigated. Variability from processing have been evaluated and characterized.
DESIGN AND IMPLEMENT DYNAMIC PROGRAMMING BASED DISCRETE POWER LEVEL SMART HOME SCHEDULING USING FPGA
Resumo:
With the development and capabilities of the Smart Home system, people today are entering an era in which household appliances are no longer just controlled by people, but also operated by a Smart System. This results in a more efficient, convenient, comfortable, and environmentally friendly living environment. A critical part of the Smart Home system is Home Automation, which means that there is a Micro-Controller Unit (MCU) to control all the household appliances and schedule their operating times. This reduces electricity bills by shifting amounts of power consumption from the on-peak hour consumption to the off-peak hour consumption, in terms of different “hour price”. In this paper, we propose an algorithm for scheduling multi-user power consumption and implement it on an FPGA board, using it as the MCU. This algorithm for discrete power level tasks scheduling is based on dynamic programming, which could find a scheduling solution close to the optimal one. We chose FPGA as our system’s controller because FPGA has low complexity, parallel processing capability, a large amount of I/O interface for further development and is programmable on both software and hardware. In conclusion, it costs little time running on FPGA board and the solution obtained is good enough for the consumers.
Resumo:
The widespread of low cost embedded electronics makes it easier to implement the smart devices that can understand either the environment or the user behaviors. The main object of this project is to design and implement home use portable smart electronics, including the portable monitoring device for home and office security and the portable 3D mouse for convenient use. Both devices in this project use the MPU6050 which contains a 3 axis accelerometer and a 3 axis gyroscope to sense the inertial motion of the door or the human hands movement. For the portable monitoring device for home and office security, MPU6050 is used to sense the door (either home front door or cabinet door) movement through the gyroscope, and Raspberry Pi is then used to process the data it receives from MPU6050, if the data value exceeds the preset threshold, Raspberry Pi would control the USB Webcam to take a picture and then send out an alert email with the picture to the user. The advantage of this device is that it is a small size portable stand-alone device with its own power source, it is easy to implement, really cheap for residential use, and energy efficient with instantaneous alert. For the 3D mouse, the MPU6050 would use both the accelerometer and gyroscope to sense user hands movement, the data are processed by MSP430G2553 through a digital smooth filter and a complementary filter, and then the filtered data will pass to the personal computer through the serial COM port. By applying the cursor movement equation in the PC driver, this device can work great as a mouse with acceptable accuracy. Compared to the normal optical mouse we are using, this mouse does not need any working surface, with the use of the smooth and complementary filter, it has certain accuracy for normal use, and it is easy to be extended to a portable mouse as small as a finger ring.