963 resultados para Energy transition


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The high-temperature cubic-tetragonal phase transition of pure stoichiometric zirconia is studied by molecular dynamics (MD) simulations and within the framework of the Landau theory of phase transformations. The interatomic forces are calculated using an empirical, self-consistent, orthogonal tight-binding model, which includes atomic polarizabilities up to the quadrupolar level. A first set of standard MD calculations shows that, on increasing temperature, one particular vibrational frequency softens. The temperature evolution of the free-energy surfaces around the phase transition is then studied with a second set of calculations. These combine the thermodynamic integration technique with constrained MD simulations. The results seem to support the thesis of a second-order phase transition but with unusual, very anharmonic behavior above the transition temperature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate the ability of the local density approximation (LDA) in density functional theory to predict the near-edge structure in electron energy-loss spectroscopy in the dipole approximation. We include screening of the core hole within the LDA using Slater's transition state theory. We find that anion K-edge threshold energies are systematically overestimated by 4.22 +/- 0.44 eV in twelve transition metal carbides and nitrides in the rock-salt (B1) structure. When we apply this 'universal' many-electron correction to energy-loss spectra calculated within the transition state approximation to LDA, we find quantitative agreement with experiment to within one or two eV for TiC, TiN and VN. We compare our calculations to a simpler approach using a projected Mulliken density which honours the dipole selection rule, in place of the dipole matrix element itself. We find remarkably close agreement between these two approaches. Finally, we show an anomaly in the near-edge structure in CrN to be due to magnetic structure. In particular, we find that the N K edge in fact probes the magnetic moments and alignments of ther sublattice.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Energies of the 700 lowest levels in Fe XX have been obtained using the multiconfiguration Dirac-Fock method. Configuration interaction method on the basis set of transformed radial orbitals with variable parameters taking into account relativistic corrections in the Breit-Pauli approximation was used to crosscheck our presented results. Transition probabilities, oscillator and line strengths are presented for electric dipole (E1), electric quadrupole (E2) and magnetic dipole (M1) transitions among these levels. The total radiative transition probabilities from each level are also provided. Results are compared with data compiled by NIST and with other theoretical work.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multiconfigurational Dirac-Fock calculations are reported for 656 energy levels and the 214 840 electric dipole (E I), electric quadrupole (E2) and magnetic dipole (M1) transition probabilities in oxygen-like Fe xix. The spectroscopic notations as well as the total transition probabilities from each energy level are provided. Good agreement is found with data compiled by NIST.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Boundary layer transition estimation and modelling is essential for the design of many engineering products across many industries. In this paper, the Reynolds-averaged Navier–Stokes are solved in conjunction with three additional transport equations to model and predict boundary layer transition. The transition model (referred to as the kTkT–kLkL–ωω model) is based on the kk–ωω framework with an additional transport equation to incorporate the effects low-frequency flow oscillations in the form of a laminar kinetic energy (kLkL). Firstly, a number of rectifications are made to the original kTkT–kLkL–ωω framework in order to ensure an appropriate response to the free-stream turbulence level and to improve near wall predictions. Additionally, the model is extended to incorporate the capability to model transition due to surface irregularities in the form of backward-facing steps with maximum non-dimensional step sizes of approximately 1.5 times the local displacement thickness of the boundary layer where the irregularity is located (i.e k/δ∗⪅1.5k/δ∗⪅1.5) at upstream turbulence intensities in the range 0.01<Tu(%)<0.80.01<Tu(%)<0.8. A novel function is proposed to incorporate transition sensitivity due to aft-facing steps. This paper details the rationale behind the development of this new function and demonstrates its suitability for transition onset estimation on a flat plate at zero pressure gradient.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and of massive electric vehicle is envisaged. The present paper proposes a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and Vehicle-to-Grid (V2G). This method considers that the energy resources are managed by a Virtual Power Player (VPP) which established contracts with their owners. It takes into account these contracts, the users' requirements subjected to the VPP, and several discharge price steps. The full AC power flow calculation included in the model takes into account network constraints. The influence of the successive day requirements on the day-ahead optimal solution is discussed and considered in the proposed model. A case study with a 33-bus distribution network and V2G is used to illustrate the good performance of the proposed method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Phycobilisomes are the major light harvesting complexes for cyanobacteria and phycocyanin is the primary phycobiliprotein of the phycobilisome rod. The phycocyanobilin lyases responsible for chromophorylating the phycocyanin p subunit (CpcB) have been recently identified in the cyanobacterium Synechococcus sp. PCC 7002. Surprisingly, mutants missing the CpcB lyases were nevertheless capable of producing pigmented phycocyanin. 10K absorbance measurements revealed that the energy states of the p phycocyanin chromophores were only subtly shifted; however, 77K steady state fluorescence emission spectroscopy showed excitation energy transfer involving the targeted chromophores to be highly disrupted. Such evidence suggests that phycobilin orientation within the binding domain is specifically modified. We hypothesized that alternate, less specific lyases are able to act on the p binding sites. A phycocyanin linker-polypeptide deficient mutant was similarly characterized. The light state transition, a short term adaptation of the photosynthetic light harvesting apparatus resulting in the redistribution of excitation energy among the photo systems, was shown to be dominated by the reallocation of phycocyanin-absorbed excitation energy. Treatment with a high M phosphate buffer effectively prevented the redistribution of both chlorophyll a- and phycobilisome- absorbed excitation energy, suggesting that the two effects are not strictly independent. The mutant strains required a larger redistribution of excitation energy between light states, perhaps to compensate for their loss in phycobilisome antenna function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Slab and cluster model spin-polarized calculations have been carried out to study various properties of isolated first-row transition metal atoms adsorbed on the anionic sites of the regular MgO(100) surface. The calculated adsorption energies follow the trend of the metal cohesive energies, indicating that the changes in the metal-support and metal-metal interactions along the series are dominated by atomic properties. In all cases, except for Ni at the generalized gradient approximation level, the number of unpaired electron is maintained as in the isolated metal atom. The energy required to change the atomic state from high to low spin has been computed using the PW91 and B3LYP density-functional-theory-based methods. PW91 fails to predict the proper ground state of V and Ni, but the results for the isolated and adsorbed atom are consistent within the method. B3LYP properly predicts the ground state of all first-row transition atom the high- to low-spin transition considered is comparable to experiment. In all cases, the interaction with the surface results in a reduced high- to low-spin transition energy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We calculate the energy and lifetime of the ground state hyperfine structure transition in one-electron Bi^82+ . The influence of various distributions of the magnetic moment and the electric charge in the nucleus ^209_83 Bi on energy and lifetime is studied.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Subsidised energy prices in pre-transition Hungary had led to excessive energy intensity in the agricultural sector. Transition has resulted in steep input price increases. In this study, Allen and Morishima elasticities of substitution are estimated to study the effects of these price changes on energy use, chemical input use, capital formation and employment. Panel data methods, Generalised Method of Moments (GMM) and instrument exogeneity tests are used to specify and estimate technology and substitution elasticities. Results indicate that indirect price policy may be effective in controlling energy consumption. The sustained increases in energy and chemical input prices have worked together to restrict energy and chemical input use, and the substitutability between energy, capital and labour has prevented the capital shrinkage and agricultural unemployment situations from being worse. The Hungarian push towards lower energy intensity may be best pursued through sustained energy price increases rather than capital subsidies. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Global horizontal wavenumber kinetic energy spectra and spectral fluxes of rotational kinetic energy and enstrophy are computed for a range of vertical levels using a T799 ECMWF operational analysis. Above 250 hPa, the kinetic energy spectra exhibit a distinct break between steep and shallow spectral ranges, reminiscent of dual power-law spectra seen in aircraft data and high-resolution general circulation models. The break separates a large-scale ‘‘balanced’’ regime in which rotational flow strongly dominates divergent flow and a mesoscale ‘‘unbalanced’’ regime where divergent energy is comparable to or larger than rotational energy. Between 230 and 100 hPa, the spectral break shifts to larger scales (from n 5 60 to n 5 20, where n is spherical harmonic index) as the balanced component of the flow preferentially decays. The location of the break remains fairly stable throughout the stratosphere. The spectral break in the analysis occurs at somewhat larger scales than the break seen in aircraft data. Nonlinear spectral fluxes defined for the rotational component of the flow maximize between about 300 and 200 hPa. Large-scale turbulence thus centers on the extratropical tropopause region, within which there are two distinct mechanisms of upscale energy transfer: eddy–eddy interactions sourcing the transient energy peak in synoptic scales, and zonal mean–eddy interactions forcing the zonal flow. A well-defined downscale enstrophy flux is clearly evident at these altitudes. In the stratosphere, the transient energy peak moves to planetary scales and zonal mean–eddy interactions become dominant.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have investigated methane (CH4) dissociative chemisorption on the Ni{100} surface by first-principles molecular dynamics (MD) simulations. Our results show that this reaction is mode-specific, with the n1 state being the most strongly coupled to efficient energy flow into the reaction coordinate when the molecule reaches the transition state. By performing MD simulations for two different transition state (TS) structures we provide evidence of TS structure-specific energy redistribution in methane chemisorption. Our results are compared with recently reported state-resolved measurement of methane adsorption probability on nickel surfaces, and we find that a strong correlation exists between the highest vibrational efficacy measured on Ni{100} for the n1 state and the calculated highest fractional vibrational energy content in this mode.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We determined by means of photoluminescence measurements the dependence on temperature of the transition energy of excitons in GaAs/Al(x)Ga(1-x)As quantum wells with different alloy concentrations (with different barrier heights). Using a fitting procedure, we determined the parameters which describe the behavior of the excitonic transition energy as a function of temperature according to three different theoretical models. We verified that the temperature dependence of the excitonic transition energy does not only depend on the GaAs material but also depends on the barrier material, i.e. on the alloy composition. The effect of confinement on the temperature dependence of the excitonic transition is discussed.