988 resultados para Energy gap


Relevância:

60.00% 60.00%

Publicador:

Resumo:

An inexpensive and effective simple method for the preparation of nano-crystalline titanium oxide (anatase) thin films at room temperature on different transparent substrates is presented. This method is based on the use of peroxo-titanium complex, i.e. titanium isopropoxide as a single initiating organic precursor. Post-annealing treatment is necessary to convert the deposited amorphous film into titanium oxide (TiO2) crystalline (anatase) phase. These films have been characterized for X-ray diffraction (XRD) studies, atomic force microscopic (AFM) studies and optical measurements. The optical constants such as refractive index and extinction coefficient have been estimated by using envelope technique. Also, the energy gap values have been estimated using Tauc's formula for on glass and quartz substrates are found to be 3.35 eV and 3.39 eV, respectively. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1H NMR spin-lattice relaxation time (T1) studies have been carried out in the temperature range 100 K to 4 K, at two Larmor frequencies 11.4 and 23.3 MHz, in the mixed system of betaine phosphate and glycine phosphite (BPxGPI(1-x)), to study the effects of disorder on the proton group dynamics. Analysis of T1 data indicates the presence of a number of inequivalent methyl groups and a gradual transition from classical reorientations to quantum tunneling rotations. At lower temperatures, microstructural disorder in the local environments of the methyl groups, result in a distribution in the activation energy (Ea) and the torsional energy gap (E01). For certain values of x, the magnetisation recovery shows biexponential behaviour at lower temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poly(linalool) thin films were fabricated using RF plasma polymerisation. All films were found to be smooth, defect-free surfaces with average roughness of 0.44 nm. The FTIR analysis of the polymer showed a notable reduction in –OH moiety and complete dissociation of C=C unsaturation compared to the monomer, and presence of a ketone band absent from the spectrum of the monomer. Poly(linalool) were characterised by chain branching and a large quantity of short polymer chains. Films were optically transparent, with refractive index and extinction coefficient of 1.55 and 0.001 (at 500 nm) respectively, indicating a potential application as an encapsulating (protective) coating for circuit boards. The optical band gap was calculated to be 2.82 eV, which is in the semiconducting energy gap region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent advancements in the area of organic polymer applications demand novel and advanced materials with desirable surface, optical and electrical properties to employ in emerging technologies. This study examines the fabrication and characterization of polymer thin films from non-synthetic Terpinen-4-ol monomer using radio frequency plasma polymerization. The optical properties, thickness and roughness of the thin films were studied in the wavelength range 200–1000 nm using ellipsometry. The polymer thin films of thickness from 100 nm to 1000 nm were fabricated and the films exhibited smooth and defect-free surfaces. At 500 nm wavelength, the refractive index and extinction coefficient were found to be 1.55 and 0.0007 respectively. The energy gap was estimated to be 2.67 eV, the value falling into the semiconducting Eg region. The obtained optical and surface properties of Terpinen-4-ol based films substantiate their candidacy as a promising low-cost material with potential applications in electronics, optics, and biomedical industries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show simultaneous p- and n-type carrier injection in a bilayer graphene channel by varying the longitudinal bias across the channel and the top-gate voltage. The top gate is applied electrochemically using solid polymer electrolyte and the gate capacitance is measured to be 1.5 microF cm(-2), a value about 125 times higher than the conventional SiO(2) back-gate capacitance. Unlike the single-layer graphene, the drain-source current does not saturate on varying the drain-source bias voltage. The energy gap opened between the valence and conduction bands using top- and back-gate geometry is estimated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present here a theoretical approach to compute the molecular magnetic anisotropy parameters, D (M) and E (M) for single molecule magnets in any given spin eigenstate of exchange spin Hamiltonian. We first describe a hybrid constant M (S) valence bond (VB) technique of solving spin Hamiltonians employing full spatial and spin symmetry adaptation and we illustrate this technique by solving the exchange Hamiltonian of the Cu6Fe8 system. Treating the anisotropy Hamiltonian as perturbation, we compute the D (M)and E(M) values for various eigenstates of the exchange Hamiltonian. Since, the dipolar contribution to the magnetic anisotropy is negligibly small, we calculate the molecular anisotropy from the single-ion anisotropies of the metal centers. We have studied the variation of D (M) and E(M) by rotating the single-ion anisotropies in the case of Mn12Ac and Fe-8 SMMs in ground and few low-lying excited states of the exchange Hamiltonian. In both the systems, we find that the molecular anisotropy changes drastically when the single-ion anisotropies are rotated. While in Mn12Ac SMM D (M) values depend strongly on the spin of the eigenstate, it is almost independent of the spin of the eigenstate in Fe-8 SMM. We also find that the D (M)value is almost insensitive to the orientation of the anisotropy of the core Mn(IV) ions. The dependence of D (M) on the energy gap between the ground and the excited states in both the systems has also been studied by using different sets of exchange constants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adiabatic quantum computation is based on the adiabatic evolution of quantum systems. We analyze a particular class of quantum adiabatic evolutions where either the initial or final Hamiltonian is a one-dimensional projector Hamiltonian on the corresponding ground state. The minimum-energy gap, which governs the time required for a successful evolution, is shown to be proportional to the overlap of the ground states of the initial and final Hamiltonians. We show that such evolutions exhibit a rapid crossover as the ground state changes abruptly near the transition point where the energy gap is minimum. Furthermore, a faster evolution can be obtained by performing a partial adiabatic evolution within a narrow interval around the transition point. These results generalize and quantify earlier works.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The linear spin-1/2 Heisenberg antiferromagnet with exchanges J(1) and J(2) between first and second neighbors has a bond-order wave (BOW) phase that starts at the fluid-dimer transition at J(2)/J(1)=0.2411 and is particularly simple at J(2)/J(1)=1/2. The BOW phase has a doubly degenerate singlet ground state, broken inversion symmetry, and a finite-energy gap E-m to the lowest-triplet state. The interval 0.4 < J(2)/J(1) < 1.0 has large E-m and small finite-size corrections. Exact solutions are presented up to N = 28 spins with either periodic or open boundary conditions and for thermodynamics up to N = 18. The elementary excitations of the BOW phase with large E-m are topological spin-1/2 solitons that separate BOWs with opposite phase in a regular array of spins. The molar spin susceptibility chi(M)(T) is exponentially small for T << E-m and increases nearly linearly with T to a broad maximum. J(1) and J(2) spin chains approximate the magnetic properties of the BOW phase of Hubbard-type models and provide a starting point for modeling alkali-tetracyanoquinodimethane salts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper deals with the manifestations of conical intersections (CIs), unequivocal spectroscopic signatures of which are still elusive, in the resonance Raman intensities. In particular, the results of our calculations on the `two state-two vibrational mode' and the `two state-three vibrational mode' models are presented. The models comprise two excited states of different spatial symmetry, one bright and one dark, which are coupled by a nontotally symmetric mode while the energy gap between them is tuned by one/two totally symmetric modes. Time dependent theory for vibronically coupled states is employed for the calculation and analysis of Raman excitation profiles (REPs). The manifestation of intersections in REPs is studied by extensive modelm calculations and the results of two specific models are presented. Themfeasibility of using REPs to probe the role of CIs in polyatomic systems is ascertained by multimode calculations on two polyatomic systems viz., pyrazine and trans-azobenzene. The study also notes the importance of the pump excitation wavelength dependence in a femtosecond time-resolved experiment probing the intersection-induced nonadiabatic dynamics. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A theory of the insulator-metal transition in transition-metal compounds is developed in terms of the collapse of the effective energy gap which is a function of the thermally excited electron-hole pairs. This dependence is shown to arise from the hole-lattice interaction. The reaction of the lattice is found to be equivalent to generating an internal positive pressure (strain). Estimates show that the observed typical behaviour of the conductivity jump and the change of volume at the transition temperature can be explained by the present theory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The photoacoustic technique is used to determine the optical energy gap E0 of bulk SixTe100−x glasses in the glass-forming region 10 ≤ x ≤ 28. The thermal diffusivity α of these samples has also been measured. The variation of E0 and α with x is reported. It is found that E0 increases with x nearly linearly with a sharp decrease in the rate of increase beyond x = 20. The thermal diffusivity also increases with x up to x = 20 but decreases for compositions with higher values of x. The observed behaviour is explained on the basis of a chemical bond approach. It is accounted for in terms of the increase in the number of Te---Te bonds and formation of SiTe4 tetrahedra with an increase in the chalcogen content.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CaSiO3 : Dy3+ (1-5 mol. %) nanophosphors were synthesized by a simple low-temperature solution combustion method. Powder X-ray diffraction patterns revealed that the phosphors are crystalline and can be indexed to a monoclinic phase. Scanning electron micrographs exhibited faceted plates and angular crystals of different sizes with a porous nature. Photoluminescence properties of the Dy3+-doped CaSiO3 phosphors were observed and analyzed. Emission peaks at 483, 573 and 610 nm corresponding to Dy3+ were assigned as F-4(9/2)-> H-6(15/2), F-4(9/2) -> H-6(13/2) and F-4(9/2) -> H-6(11/2) transitions, respectively, and dominated by the Dy3+ F-4(9/2) -> H-6(13/2) hyperfine transition. Experimental results revealed that the luminescence intensity was affected by both heat treatment and the concentration of Dy3+ (1-5 mol. %) in the CaSiO3 host. Optimal luminescence conditions were achieved when the concentration of Dy3+ was 2 mol. %. UV-visible absorption features an intense band at 240 nm, which corresponds to an O-Si ligand-to-metal charge transfer band in the SiO32- group. The optical energy band gap for the undoped sample was found to be 5.45 eV, whereas in Dy3+-doped phosphors it varies in the range 5.49-5.65 eV. The optical energy gap widens with increase of Dy3+ ion dopant.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gd2O3:Eu3+ (0.5-8.0 mol%) nanophosphors have been prepared by low temperature solution combustion method using metal nitrates as oxidizers and oxalyl dihydrazide (ODH) as a fuel. The phosphors are well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and photoluminescence (PL) techniques. PXRD patterns of as-formed and calcined (800 degrees C, 3 h) Gd2O3 powders exhibit monoclinic phase with mean crystallite sizes ranging from 20 to 50 nm. Eu3+ doping changes the structure from monoclinic to mixed phase of monoclinic and cubic. SEM micrographs shows the products are foamy, agglomerated and fluffy in nature due to the large amount of gases liberated during combustion reaction. Upon 254 nm excitation the photoluminescence of the Gd2O3:Eu3+ particles show red emission at 611 nm corresponding to D-5(0)-> F-7(2) transition. It is observed that PL intensity increases with calcination temperature. This might be attributed to better crystallization and eliminates the defects, which serve as centers of non-radiative relaxation for nanomaterials. It is observed that the optical energy gap (E-g) is widened with increase Eu3+ content. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The potential of Bi2CuO4 as the first oxide system to show a linear-chain magnetic behaviour is examined. Electron diffraction studies do not resolve the previously reported ambiguity regarding its space group. The magnetic susceptibility data at high temperatures are best fitted to a uniform antiferromagnetic spin-1/2 Heisenberg chain. At low temperatures, however, neither the uniform nor the alternating Heisenberg antiferromagnetic model fits the data. Magnetic susceptibility data over the entire temperature range can be fitted if one assumes dimeric units with a nearly degenerate second singlet state close to the ground state, these states being separated from an excited triplet state by an energy gap. A simple heuristic model of a dimer that gives such an energy level spectrum is examined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In some bimolecular diffusion-controlled electron transfer (ET) reactions such as ion recombination (IR), both solvent polarization relaxation and the mutual diffusion of the reacting ion pair may determine the rate and even the yield of the reaction. However, a full treatment with these two reaction coordinates is a challenging task and has been left mostly unsolved. In this work, we address this problem by developing a dynamic theory by combining the ideas from ET reaction literature and barrierless chemical reactions. Two-dimensional coupled Smoluchowski equations are employed to compute the time evolution of joint probability distribution for the reactant (P-(1)(X,R,t)) and the product (p((2))(X,R,t)), where X, as is usual in ET reactions, describes the solvent polarization coordinate and R is the distance between the reacting ion pair. The reaction is described by a reaction line (sink) which is a function of X and R obtained by imposing a condition of equal energy on the initial and final states of a reacting ion pair. The resulting two-dimensional coupled equations of motion have been solved numerically using an alternate direction implicit (ADI) scheme (Peaceman and Rachford, J. Soc. Ind. Appl. Math. 1955, 3, 28). The results reveal interesting interplay between polarization relaxation and translational dynamics. The following new results have been obtained. (i) For solvents with slow longitudinal polarization relaxation, the escape probability decreases drastically as the polarization relaxation time increases. We attribute this to caging by polarization of the surrounding solvent, As expected, for the solvents having fast polarization relaxation, the escape probability is independent of the polarization relaxation time. (ii) In the slow relaxation limit, there is a significant dependence of escape probability and average rate on the initial solvent polarization, again displaying the effects of polarization caging. Escape probability increases, and the average rate decreases on increasing the initial polarization. Again, in the fast polarization relaxation limit, there is no effect of initial polarization on the escape probability and the average rate of IR. (iii) For normal and barrierless regions the dependence of escape probability and the rate of IR on initial polarization is stronger than in the inverted region. (iv) Because of the involvement of dynamics along R coordinate, the asymmetrical parabolic (that is, non-Marcus) energy gap dependence of the rate is observed.