822 resultados para Endothelial Dysfunction
Resumo:
Introduction: It is widely accepted that obesity is associated with endothelial dysfunction. In a recent paper, we have also found circuit resistance training may reduce visceral fat in obese aged women. Accordingly, the current study was conducted to ascertain the effects of circuit resistance training on markers of endothelial dysfunction in this population group. Methods: In the present interventional study, a total of 48 obese aged women were recruited from the community. Twenty-four of them were randomly assigned to perform a 12-week resistance circuit training programme, 3-days per week. This training was circularly performed in 6 stations: arm curl, leg extension, seated row, leg curl, triceps extension and leg press. The Jamar handgrip electronic dynamometer was used to assess maximal handgrip strength of the dominant hand. Lastly, serum samples were analysed using an immunoassay (ELISA) for endothelin-1, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Results: When compared to baseline, resistance training significantly reduced serum levels of endothelin-1 (2.28 ± 0.7 vs. 1.98 ± 1.1 pg/ml; p = 0.019; d = 0.67) and ICAM-1 (290 ± 69 vs. 255 ± 76 ng/ml; p = 0.004; d = 0.92) in the experimental group. No significant changes in any of the tested outcomes were found in the control group. Conclusion: A short-term circuit resistance program improved endothelial dysfunction in aged obese women. Further studies on this topic are still required to consolidate this approach in clinical application.
Resumo:
Objectives: This study sought to investigate the effect of endothelial dysfunction on the development of cardiac hypertrophy and fibrosis.
Background: Endothelial dysfunction accompanies cardiac hypertrophy and fibrosis, but its contribution to these conditions is unclear. Increased nicotinamide adenine dinucleotide phosphate oxidase-2 (NOX2) activation causes endothelial dysfunction.
Methods: Transgenic mice with endothelial-specific NOX2 overexpression (TG mice) and wild-type littermates received long-term angiotensin II (AngII) infusion (1.1 mg/kg/day, 2 weeks) to induce hypertrophy and fibrosis.
Results: TG mice had systolic hypertension and hypertrophy similar to those seen in wild-type mice but developed greater cardiac fibrosis and evidence of isolated left ventricular diastolic dysfunction (p < 0.05). TG myocardium had more inflammatory cells and VCAM-1-positive vessels than did wild-type myocardium after AngII treatment (both p < 0.05). TG microvascular endothelial cells (ECs) treated with AngII recruited 2-fold more leukocytes than did wild-type ECs in an in vitro adhesion assay (p < 0.05). However, inflammatory cell NOX2 per se was not essential for the profibrotic effects of AngII. TG showed a higher level of endothelial-mesenchymal transition (EMT) than did wild-type mice after AngII infusion. In cultured ECs treated with AngII, NOX2 enhanced EMT as assessed by the relative expression of fibroblast versus endothelial-specific markers.
Conclusions: AngII-induced endothelial NOX2 activation has profound profibrotic effects in the heart in vivo that lead to a diastolic dysfunction phenotype. Endothelial NOX2 enhances EMT and has proinflammatory effects. This may be an important mechanism underlying cardiac fibrosis and diastolic dysfunction during increased renin-angiotensin activation.
Resumo:
OBJECTIVES: The objective of this study was to examine determinants of excess coronary artery disease risk in UK South Asians, more prevalent in this population than UK Caucasians, by examining differences in risk factors, vascular function, and endothelial progenitor cells (EPCs). METHODS AND RESULTS: 24 South Asian and 25 Caucasian healthy age-matched nonsmoking men were studied. Vascular function was assessed by flow-mediated and GTN brachial artery dilatation and blood flow responses to infusion of ACh, SNP, and L-NMMA. EPC number and function were measured by flow cytometry (CD34, CD133, and KDR positive cells), and CFU/migration assays. Traditional risk factors and anthropometric measurements were similar in the groups. South Asians had higher fasting insulin levels (6.01 versus 3.62 microU/mL; P = 0.02). South Asians had lower FMD (6.9 versus 8.5%; P = 0.003), L-NMMA response (0.8 versus 1.3 mL/min/100 mL; P = 0.03), mean SNP response (9.5+/-0.6 versus 11.6+/-0.6; P = 0.02), EPC number (0.046+/-0.005% versus 0.085+/-0.009%; P = < 0.001), and CFU ability (CFU 4.29+/-1.57 versus 18.86+/-4.00; P = 0.005). EPC number was the strongest predictor of FMD. Ethnicity was the strongest predictor of EPC number. CONCLUSIONS: Healthy South Asian men are more insulin resistant, and demonstrate endothelial dysfunction and reduced EPC number and function compared with Caucasians. These abnormalities may contribute to their increased CAD risk.
Resumo:
NADPH oxidase (Nox)-derived reactive oxygen species (ROS) are known to be involved in angiotensin II-induced hypertension and endothelial dysfunction. Several Nox isoforms are expressed in the vessel wall, among which Nox2 is especially abundant in the endothelium. Endothelial Nox2 levels rise during hypertension but little is known about the cell-specific role of endothelial Nox2 in vivo. To address this question, we generated transgenic mice with endothelial-specific overexpression of Nox2 (Tg) and studied the effects on endothelial function and blood pressure. Tg had an about twofold increase in endothelial Nox2 levels which was accompanied by an increase in p22phox levels but no change in levels of other Nox isoforms or endothelial nitric oxide synthase (eNOS). Basal NADPH oxidase activity, endothelial function and blood pressure were unaltered in Tg compared to wild-type littermates. Angiotensin II caused a greater increase in ROS production in Tg compared to wild-type aorta and attenuated acetylcholine-induced vasorelaxation. Both low and high dose chronic angiotensin II infusion increased telemetric ambulatory blood pressure more in Tg compared to wild-type, but with different patterns of BP change and aortic remodeling depending upon the dose of angiotensin II dose. These results indicate that an increase in endothelial Nox2 levels contributes to angiotensin II-induced endothelial dysfunction, vascular remodeling and hypertension. © 2011 The Author(s).
Resumo:
OBJECTIVES: This study sought to investigate the effect of endothelial dysfunction on the development of cardiac hypertrophy and fibrosis. BACKGROUND: Endothelial dysfunction accompanies cardiac hypertrophy and fibrosis, but its contribution to these conditions is unclear. Increased nicotinamide adenine dinucleotide phosphate oxidase-2 (NOX2) activation causes endothelial dysfunction. METHODS: Transgenic mice with endothelial-specific NOX2 overexpression (TG mice) and wild-type littermates received long-term angiotensin II (AngII) infusion (1.1 mg/kg/day, 2 weeks) to induce hypertrophy and fibrosis. RESULTS: TG mice had systolic hypertension and hypertrophy similar to those seen in wild-type mice but developed greater cardiac fibrosis and evidence of isolated left ventricular diastolic dysfunction (p < 0.05). TG myocardium had more inflammatory cells and VCAM-1-positive vessels than did wild-type myocardium after AngII treatment (both p < 0.05). TG microvascular endothelial cells (ECs) treated with AngII recruited 2-fold more leukocytes than did wild-type ECs in an in vitro adhesion assay (p < 0.05). However, inflammatory cell NOX2 per se was not essential for the profibrotic effects of AngII. TG showed a higher level of endothelial-mesenchymal transition (EMT) than did wild-type mice after AngII infusion. In cultured ECs treated with AngII, NOX2 enhanced EMT as assessed by the relative expression of fibroblast versus endothelial-specific markers. CONCLUSIONS: AngII-induced endothelial NOX2 activation has profound profibrotic effects in the heart in vivo that lead to a diastolic dysfunction phenotype. Endothelial NOX2 enhances EMT and has proinflammatory effects. This may be an important mechanism underlying cardiac fibrosis and diastolic dysfunction during increased renin-angiotensin activation.
Resumo:
The routine cultivation of human corneal endothelial cells, with the view to treating patients with endothelial dysfunction, remains a challenging task. While progress in this field has been buoyed by the proposed existence of progenitor cells for the corneal endothelium at the corneal limbus, strategies for exploiting this concept remain unclear. In the course of evaluating methods for growing corneal endothelial cells, we have noted a case where remarkable growth was achieved using a serial explant culture technique. Over the course of 7 months, a single explant of corneal endothelium, acquired from cadaveric human tissue, was sequentially seeded into 7 culture plates and on each occasion produced a confluent cell monolayer. Sample cultures were confirmed as endothelial in origin by positive staining for glypican-4. On each occasion, small cells, closest to the tissue explant, developed into a highly compact layer with an almost homogenous structure. This layer was resistant to removal with trypsin and produced continuous cell outgrowth during multiple culture periods. The small cells gave rise to larger cells with phase-bright cell boundaries and prominent immunostaining for both nestin and telomerase. Nestin and telomerase were also strongly expressed in small cells immediately adjacent to the wound site, following transfer of the explant to another culture plate. These findings are consistent with the theory that progenitor cells for the corneal endothelium reside within the limbus and provide new insights into expected expression patterns for nestin and telomerase within the differentiation pathway.
Resumo:
Elevated plasma concentrations of lipoprotein(a) (Lp(a)) are a risk factor for a variety of atherosclerotic disorders including coronary heart disease. In the current study, the investigators report that incubation of cultured human umbilical vein endothelial cells (HUVECs) with high concentrations of apolipoprotein(a)(apo(a)/Lp(a)) induces apoptosis and endothelial dysfunction in a dose dependent manner. Apo(a), the component of Lp(a) mediates these effects by inducing externalization of Annexin V, DNA condensation and fragmentation which are the hallmarks of death by apoptosis. The pathway of apo(a)-induced apoptosis is associated with overexpression of Bax, caspase-9, p53 phosphorylation, decreased in Bcl-2 expression and activation of caspase-3. Taken together, the data suggest that elevated concentration of apo(a) induces apoptosis in endothelial cells probably by activating the intrinsic pathway. The data also showed that apo(a) induces increased expression of the growth arrest protein (Gas1), which has been known to induce apoptosis and growth arrest in vitro. In addition the data showed that elevated apo(a)/Lp(a) attenuates endothelial nitric oxide (eNOS) activity and endothelin-1 (ET-1) in a dose and time-dependent manner, particularly with small apo(a) isoforms. In summary, the authors proposed a new signaling pathway by which apo(a)/Lp(a) induce apoptosis and this finding could help explain how apo(a)/Lp(a) mediate atherosclerosis related diseases.
Resumo:
Objectives: Tetrahydrobiopterin (BH4) is an essential cofactor for endothelial nitric oxide synthase (eNOS) activity. BH4 levels are regulated by de novo biosynthesis; the rate-limiting enzyme is GTP cyclohydrolase I (GTPCH). BH4 activates and promotes homodimerisation of purified eNOS protein, but the intracellular mechanisms underlying BH4-mediated eNOS regulation in endothelial cells remain less clear. We aimed to investigate the role of BH4 levels in intracellular eNOS regulation, by targeting the BH4 synthetic pathway as a novel strategy to modulate intracellular BH4 levels. Methods: We constructed a recombinant adenovirus, AdGCH, encoding human GTPCH. We infected human endothelial cells with AdGCH, investigated the changes in intracellular biopterin levels, and determined the effects on eNOS enzymatic activity, protein levels and dimerisation. Results: GTPCH gene transfer in EAhy926 endothelial cells increased BH4 >10-fold compared with controls (cells alone or control adenovirus infection), and greatly enhanced NO production in a dose-dependent, eNOS-specific manner. We found that eNOS was principally monomeric in control cells, whereas GTPCH gene transfer resulted in a striking increase in eNOS homodimerisation. Furthermore, the total amounts of both native eNOS protein and a recombinant eNOS–GFP fusion protein were significantly increased following GTPCH gene transfer. Conclusions: These findings suggest that GTPCH gene transfer is a valid approach to increase BH4 levels in human endothelial cells, and provide new evidence for the relative importance of different mechanisms underlying BH4-mediated eNOS regulation in intact human endothelial cells. Additionally, these observations suggest that GTPCH may be a rational target to augment endothelial BH4 and normalise eNOS activity in endothelial dysfunction states.
Resumo:
Pre-eclampsia (PE) is a hypertensive disorder of pregnancy characterized by maternal systemic endothelial dysfunction. While the clinical manifestations resolve soon after delivery, a large body of epidemiological evidence indicates significant long-term maternal risk for cardiovascular disease (CVD) after PE. The mechanisms by which PE and future CVD are associated are unclear, although shared constitutional risk factors likely contribute to the features of endothelial dysfunction characteristic to both. We postulate that PE offers a window of opportunity for the identification of unique markers of dysfunction in the earliest stages of disease that may be used to validate cardiovascular risk screening in the early postpartum period. The studies presented in this thesis provide evidence of changes in circulating factors in women with a recent history of PE. Using blood samples collected within the first year of pregnancy, unique patterns of microRNA expression, enrichment of coagulation system proteins and endothelial progenitor cell dysfunction were described. Many of the described changes appear to be independent of cardiovascular risk. In addition to alterations in circulating factors however, longitudinal postpartum assessments demonstrated that microvascular and cardiac abnormalities were evident in the early periods postpartum after a pre-eclamptic pregnancy. Collectively, the data presented in this thesis reveal that physiological alterations in women with a recent history of PE are not necessarily dependent on clinical parameters of cardiovascular risk, and that resulting dysfunction may be demonstrated within the first year postpartum. Importantly, the biomarkers presented herein are all demonstrated elsewhere in the literature to benefit from lifestyle modification and risk reduction. In closing, the findings of this thesis support a need for cardiovascular risk screening based on obstetrical history, namely after pregnancies complicated by PE.
Resumo:
OBJECTIVE: Increased reactive oxygen species (ROS) production is involved in the pathophysiology of endothelial dysfunction. NADPH oxidase-4 (Nox4) is a ROS-generating enzyme expressed in the endothelium, levels of which increase in pathological settings. Recent studies indicate that it generates predominantly hydrogen peroxide (H(2)O(2)), but its role in vivo remains unclear. METHODS AND RESULTS: We generated transgenic mice with endothelium-targeted Nox4 overexpression (Tg) to study the in vivo role of Nox4. Tg demonstrated significantly greater acetylcholine- or histamine-induced vasodilatation than wild-type littermates. This resulted from increased H(2)O(2) production and H(2)O(2)-induced hyperpolarization but not altered nitric oxide bioactivity. Tg had lower systemic blood pressure than wild-type littermates, which was normalized by antioxidants. CONCLUSION: Endothelial Nox4 exerts potentially beneficial effects on vasodilator function and blood pressure that are attributable to H(2)O(2) production. These effects contrast markedly with those reported for Nox1 and Nox2, which involve superoxide-mediated inactivation of nitric oxide. Our results suggest that therapeutic strategies to modulate ROS production in vascular disease may need to separately target individual Nox isoforms.
Resumo:
Impairment of endothelial nitric oxide synthase (eNOS) activity is implicated in the pathogenesis of endothelial dysfunction in many diseases including ischaemic stroke. The modulation of eNOS during and/or following ischaemic injury often represents a futile compensatory mechanism due to a significant decrease in nitric oxide (NO) bioavailability coupled with dramatic increases in the levels of reactive oxygen species that further neutralise NO. However, applications of a number of therapeutic agents alone or in combination have been shown to augment eNOS activity under a variety of pathological conditions by potentiating the expression and/or activity of Akt/eNOS/NO pathway components. The list of these therapeutic agents include NO donors, statins, angiotensin-converting enzyme inhibitors, calcium channel blockers, phosphodiesterase-3 inhibitors, aspirin, dipyridamole and ellagic acid. While most of these compounds exhibit anti-platelet properties and are able to up-regulate eNOS expression in endothelial cells and platelets, others suppress eNOS uncoupling and tetrahydrobiopterin (an eNOS stabiliser) oxidation. As the number of therapeutic molecules that modulate the expression and activity of eNOS increases, further detailed research is required to reveal their mode of action in preventing and/or reversing the endothelial dysfunction.
Resumo:
Endothelial dysfunction is a central pathomechanism in diabetes-associated complications. We hypothesized a pathogenic role in this dysfunction of cathepsin S (Cat-S), a cysteine protease that degrades elastic fibers and activates the protease-activated receptor-2 (PAR2) on endothelial cells. We found that injection of mice with recombinant Cat-S induced albuminuria and glomerular endothelial cell injury in a PAR2-dependent manner. In vivo microscopy confirmed a role for intrinsic Cat-S/PAR2 in ischemia-induced microvascular permeability. In vitro transcriptome analysis and experiments using siRNA or specific Cat-S and PAR2 antagonists revealed that Cat-S specifically impaired the integrity and barrier function of glomerular endothelial cells selectively through PAR2. In human and mouse type 2 diabetic nephropathy, only CD68(+) intrarenal monocytes expressed Cat-S mRNA, whereas Cat-S protein was present along endothelial cells and inside proximal tubular epithelial cells also. In contrast, the cysteine protease inhibitor cystatin C was expressed only in tubules. Delayed treatment of type 2 diabetic db/db mice with Cat-S or PAR2 inhibitors attenuated albuminuria and glomerulosclerosis (indicators of diabetic nephropathy) and attenuated albumin leakage into the retina and other structural markers of diabetic retinopathy. These data identify Cat-S as a monocyte/macrophage-derived circulating PAR2 agonist and mediator of endothelial dysfunction-related microvascular diabetes complications. Thus, Cat-S or PAR2 inhibition might be a novel strategy to prevent microvascular disease in diabetes and other diseases.
Resumo:
Far from simply lining the inner surface of blood vessels, the cellular monolayer that comprises the endothelium is a highly active organ that regulates vascular tone. In health, the endothelium maintains the balance between opposing dilator and constrictor influences, while in disease, it is the common ground on which cardiovascular risk factors act to initiate the atherosclerotic process. As such, it is the site at which cardiovascular disease begins and consequently acts as a barometer of an individual's likely future cardiovascular health. The vascular endothelium is a very active organ responsible for the regulation of vascular tone through the effects of locally synthesized mediators, predominantly nitric oxide (NO), endothelial NO synthase (eNOS), and superoxide. NO is abundantly evident in normally functioning vasculature where it acts as a vasodilator, inhibits inflammation, and has an antiaggregant effect on platelets. Its depletion is both a sign and cause of endothelial dysfunction resulting from reduced activity of eNOS and amplified production of nicotinamide adenine dinucleotide oxidase, which, in turn, results in raised levels of reactive oxygen species. This cascade is the basis for reduced vascular compliance through an imbalanced regulation of tone with a predominance of vasoconstrictive elements. Further, structural changes in the microvasculature are a critical early step in the loss of normal function. This microvascular dysfunction is known to be highly predictive of future macrovascular events and is consequently a very attractive target for intervention in the hypertensive population in order to prevent cardiovascular events.
Resumo:
L’atteinte de la fonction endothéliale représente une phase précoce de l’athérosclérose, un stade où les patients sont généralement asymptomatiques. Il existe donc un intérêt certain à détecter la dysfonction endothéliale. Nous avons développé une technique de mesure des variations de flot artériel au niveau des membres supérieurs, basée sur la spectroscopie proche infrarouge (NIRS). Cette approche permettrait d’étudier le niveau d’atteinte vasculaire et probablement de quantifier le degré de dysfonction endothéliale périphérique lors d’une hyperémie réactive. L'expérience a été exécutée sur deux cohortes de 13 et de 15 patients et a été comparée à la pléthysmographie par jauge de contrainte (SGP) qui est considérée comme une méthode de référence. Par la suite, nous avons caractérisé la réponse endothéliale par modélisation de la courbe hyperémique du flot artériel. Des études préliminaires avaient démontré que la réponse hyperémique adoptait majoritairement une forme bi-modale. Nous avons tenté de séparer les composantes endothéliales-dépendantes et endothéliales-indépendantes de l’hyperémie. La quantification des deux composantes de la réaction hyperémique permet de calculer un indice de la ‘santé’ du système endothélial local. Cet indice est nommé le ηfactor. Les résultats montrent une forte corrélation des mesures de flots entre la technique développée et la méthode de référence (r=0.91). Nous avons conclu que NIRS est une approche précise pour la mesure non-invasive du flot artériel. Nous avons obtenu une bonne répétabilité (ICC = 0.9313) pour le ηfactor indiquant sa robustesse. Cependant des études supplémentaires sont nécessaires pour valider la valeur de diagnostic du facteur défini. Mots clés: hyperémie réactive, réponse myogénique, oxyde nitrique, athérosclérose, spectroscopie proche infrarouge
Resumo:
Background: Endothelial dysfunction may be related to adverse effects of some dietary fatty acids (FAs). Although in vitro studies have failed to show consistent findings, this may reflect the diverse experimental protocols employed and the limited range of FAs and end points studied. Aims: To investigate the effect of dietary FA type (saturated, monounsaturated, n-6 and n-3 polyunsaturated fatty acids), concentration, incubation time and cell stimulation state, on a broad spectrum of endothelial inflammatory gene expression. Methods: Using human umbilical vein endothelial cells, with and without stimulation (+/- 10 ng/ml TNF alpha), the effects of arachidonic (AA), docosahexaenoic (DHA), eicosapentaenoic (EPA), linoleic (LA), oleic (OA) and palmitic acids (PA) (10, 25 and 100 mu M), on the expression of genes encoding a number of inflammatory proteins and transcription factors were assessed by quantitative real time RT-PCR. Results: Individual FAs differentially affect endothelial inflammatory gene expression in a gene-specific manner. EPA, LA and OA significantly up-regulated MCP-1 gene expression compared to AA (p = 0.001, 0.013, 0.008, respectively) and DHA (p < 0.0005, = 0.004, 0.002, respectively). Furthermore, cell stimulation state and FA incubation time significantly influenced reported FA effects on gene expression. Conclusions: The comparative effects of saturated, monounsaturated, n-6 and n-3 polyunsaturated FAs on endothelial gene expression depend on the specific FA investigated, its length of incubation, cell stimulation state and the gene investigated. These findings may explain existing disparity in the literature. This work was funded by the EC, Framework Programme 6 via the LIPGENE project (FOOD-CT-2003-505944).