994 resultados para End-sistolic volume
Resumo:
BACKGROUND: Resistance training (RT) is safe and practicable in low-risk populations with coronary artery disease. In patients with left ventricular (LV) dysfunction after an acute ischaemic event, few data exist about the impact of RT on LV remodelling. METHODS: In this prospective, randomized, controlled study, 38 patients, after a first myocardial infarction and a maximum ejection fraction (EF) of 45%, were assigned either to combined endurance training (ET)/RT (n=17; 15 men; 54.7+/-9.4 years and EF: 40.3+/-4.5%) or to ET alone (n=21; 17 men; 57.0+/-9.6 years and EF: 41.9+/-4.9%) for 12 weeks. ET was effectuated at an intensity of 70-85% of peak heart rate; RT, between 40 and 60% of the one-repetition maximum. LV remodelling was assessed by MRI. RESULTS: No statistically significant differences between the groups in the changes of end-diastolic volume (P=0.914), LV mass (P=0.885) and EF (P=0.763) were observed. Over 1 year, the end-diastolic volume increased from 206+/-41 to 210+/-48 ml (P=0.379) vs. 183+/-44 to 186+/-52 ml (P=0.586); LV mass from 149+/-28 to 155+/-31 g (P=0.408) vs. 144+/-36 to 149+/-42 g (P=0.227) and EF from 49.1+/-12.3 to 49.3+/-12.0% (P=0.959) vs. 51.5+/-13.1 to 54.1% (P=0.463), in the ET/RT and ET groups, respectively. Peak VO2 and muscle strength increased significantly in both groups, but no difference between the groups was noticed. CONCLUSION: RT with an intensity of up to 60% of the one-repetition maximum, after an acute myocardial infarction, does not lead to a more pronounced LV dilatation than ET alone. A combined ET/RT, or ET alone, for 3 months can both increase the peak VO2 and muscle strength significantly.
Resumo:
BACKGROUND: Muscular counterpulsation (MCP) was developed for circulatory assistance by stimulation of peripheral skeletal muscles. We report on a clinical MCP study in patients with and without chronic heart failure (CHF). METHODS AND RESULTS: MCP treatment was applied (30 patients treated, 25 controls, all under optimal therapy) for 30 minutes during eight days by an ECG-triggered, battery-powered, portable pulse generator with skin electrodes inducing light contractions of calf and thigh muscles, sequentially stimulated at early diastole. Hemodynamic parameters (ECG, blood pressure and echocardiography) were measured one day before and one day after the treatment period in two groups: Group 1 (9 MCP, 11 no MCP) with ejection fraction (EF) above 40% and Group 2 (21 MCP, 14 no MCP) below 40%. In Group 2 (all patients suffering from CHF) mean EF increased by 21% (p<0.001) and stroke volume by 13% (p<0.001), while end systolic volume decreased by 23% (p<0.001). In Group 1, the increase in EF (6%) and stroke volume (8%) was also significant (p<0.05) but less pronounced than in Group 2. Physical exercise duration and walking distance increased in Group 2 by 56% and 72%, respectively. CONCLUSIONS: Noninvasive MCP treatment for eight days substantially improves cardiac function and physical performance in patients with CHF.
Resumo:
We appreciate the comments and concerns expressed by Arakawa and colleagues regarding our article, titled “Pulsatile control of rotary blood pumps: Does the modulation waveform matter?”1 Unfortunately, we have to disagree with Arakawa and colleagues. As is obvious from the title of our article, it investigates the effect of different waveforms on the heart–device interaction. In contrast to the authors' claim, this is the first article in the literature that uses basic waveforms (sine, triangle, saw tooth, and rectangular) with different phase shifts to examines their impact on left ventricular unloading. The previous publications2, 3 and 4 just varied the pump speed during systole and diastole, which was first reported by Bearnson and associates5 in 1996, and studied its effect on aortic pressure, coronary flow, and end-diastolic volume. We should mention that dp/dtmax is a load-sensitive parameter of contractility and not representative for the degree of unloading. Moreover, none of the aforementioned reports has studied mechanical unloading and in particular the stroke work of the left ventricle. Our method is unique because we do not just alternate between high and low speed but have accurate control of the waveform because of the direct drive system of Levitronix Technologies LLC (Waltham, Mass) and a custom-developed pump controller. Without referring, Arakawa and associates state “several previous studies have already reported the coronary flow diminishes as the left ventricular assist device support increases.” It should be noted that all the waveforms used in our study have 2000 rpm average value with 1000 rpm amplitude, which is not an excessive speed for the CentriMag rotary pump (Levitronix) to collapse the ventricle and diminish the coronary flow. We agree with Arakawa and coworkers that there is a need for a heart failure model to come to more relevant results with respect to clinical expectations. However, we have explored many existing models, including species and breeds that have a native proneness to cardiomyopathy, but all of them differ from the genetic presentation in humans. We certainly do not believe that the use of microembolization, in which the coronary circulation is impaired by the injection of microspheres, would form a good model from which to draw conclusions about coronary flow change under different loading conditions. A model would be needed in which either an infarct is created to mimic ischemic heart failure or the coronary circulation remains untouched to simulate, for instance, dilated cardiomyopathy. Furthermore, in discussion we clearly mention that “lack of heart failure is a major limitation of our study.” We also believe that unloading is not the only factor of the cardiac functional recovery, and an excessive unloading of the left ventricle might lead to cardiac tissue atrophy. Therefore, in our article we mention that control of the level of cardiac unloading by assist devices has been suggested as a mechanical tool to promote recovery, and more studies are required to find better strategies for the speed modulation of rotary pumps and to achieve an optimal heart load control to enhance myocardial recovery. Finally, there are many publications about pulsing rotary blood pumps and it was impossible to include them all. We preferred to reference some of the earlier basic works such as an original research by Bearnson and coworkers5 and another article published by our group,6 which is more relevant.
Resumo:
BACKGROUND The heart is subject to structural and functional changes with advancing age. However, the magnitude of cardiac age-dependent transformation has not been conclusively elucidated. METHODS This retrospective cardiac magnetic resonance (CMR) study included 183 subjects with normal structural and functional ventricular values. End systolic volume (ESV), end diastolic volume (EDV), and ejection fraction (EF) were obtained from the left and the right ventricle in breath-hold cine CMR. Patients were classified into four age groups (20-29, 30-49, 50-69, and ≥70 years) and cardiac measurements were compared using Pearson's rank correlation over the four different groups. RESULTS With advanced age a slight but significant decrease in ESV (r=-0.41 for both ventricles, P<0.001) and EDV (r=-0.39 for left ventricle, r=-0.35 for right ventricle, P<0.001) were observed associated with a significant increase in left (r=0.28, P<0.001) and right (r=0.27, P<0.01) ventricular EF reaching a maximal increase in EF of +8.4% (P<0.001) for the left and +6.1% (P<0.01) for the right ventricle in the oldest compared to the youngest patient group. Left ventricular myocardial mass significantly decreased over the four different age groups (P<0.05). CONCLUSIONS The aging process is associated with significant changes in left and right ventricular EF, ESV and EDV in subjects with no cardiac functional and structural abnormalities. These findings underline the importance of using age adapted values as standard of reference when evaluating CMR studies.
Resumo:
A lumped parameter model of the cardiovascular system has been developed and optimized using experimental data obtained from 13 healthy subjects during graded head-up tilt (HUT) from the supine position to [Formula: see text]. The model includes descriptions of the left and right heart, direct ventricular interaction through the septum and pericardium, the systemic and pulmonary circulations, nonlinear pressure volume relationship of the lower body compartment, arterial and cardiopulmonary baroreceptors, as well as autoregulatory mechanisms. A number of important features, including the separate effects of arterial and cardiopulmonary baroreflexes, and autoregulation in the lower body, as well as diastolic ventricular interaction through the pericardium have been included and tested for their significance. Furthermore, the individual effect of parameter associated with heart failure, including LV and RV contractility, baseline systemic vascular resistance, pulmonary vascular resistance, total blood volume, LV diastolic stiffness and reflex gain on HUT response have also been investigated. Our fitted model compares favorably with our experimental measurements and published literature at a range of tilt angles, in terms of both global and regional hemodynamic variables. Compared to the normal condition, a simulated congestive heart failure condition produced a blunted response to HUT with regards to the percentage changes in cardiac output, stroke volume, end diastolic volume and effector response (i.e., heart contractility, venous unstressed volume, systemic vascular resistance and heart rate) with progressive tilting.
Resumo:
OBJECTIVES This study aimed to demonstrate that the presence of late gadolinium enhancement (LGE) is a predictor of death and other adverse events in patients with suspected cardiac sarcoidosis. BACKGROUND Cardiac sarcoidosis is the most important cause of patient mortality in systemic sarcoidosis, yielding a 5-year mortality rate between 25% and 66% despite immunosuppressive treatment. Other groups have shown that LGE may hold promise in predicting future adverse events in this patient group. METHODS We included 155 consecutive patients with systemic sarcoidosis who underwent cardiac magnetic resonance (CMR) for workup of suspected cardiac sarcoid involvement. The median follow-up time was 2.6 years. Primary endpoints were death, aborted sudden cardiac death, and appropriate implantable cardioverter-defibrillator (ICD) discharge. Secondary endpoints were ventricular tachycardia (VT) and nonsustained VT. RESULTS LGE was present in 39 patients (25.5%). The presence of LGE yields a Cox hazard ratio (HR) of 31.6 for death, aborted sudden cardiac death, or appropriate ICD discharge, and of 33.9 for any event. This is superior to functional or clinical parameters such as left ventricular (LV) ejection fraction (EF), LV end-diastolic volume, or presentation as heart failure, yielding HRs between 0.99 (per % increase LVEF) and 1.004 (presentation as heart failure), and between 0.94 and 1.2 for potentially lethal or other adverse events, respectively. Except for 1 patient dying from pulmonary infection, no patient without LGE died or experienced any event during follow-up, even if the LV was enlarged and the LVEF severely impaired. CONCLUSIONS Among our population of sarcoid patients with nonspecific symptoms, the presence of myocardial scar indicated by LGE was the best independent predictor of potentially lethal events, as well as other adverse events, yielding a Cox HR of 31.6 and of 33.9, respectively. These data support the necessity for future large, longitudinal follow-up studies to definitely establish LGE as an independent predictor of cardiac death in sarcoidosis, as well as to evaluate the incremental prognostic value of additional parameters.
Resumo:
Possibly autograph, dated at end of volume: Finitu[m] mart: 14, 1678/9. Imperfect copy with title page missing; supplied from a MS copy, dated 29 March 1680, now in the Bodleian Library.
Resumo:
Green cloth binding, with gilt spine titles.
Resumo:
Original blue cloth binding.
Resumo:
A list of works by the author included at end of volume.
Resumo:
Additional printed, typewritten and manuscript material inserted at front and end of volume and in pocket on verso of front cover.
Resumo:
Includes [1] pages of advertisement at end of volume 3.
Resumo:
At end of volume are inserted two pamphlets entitled: "Report of the Sixth annual re-union of the Thirteenth Vermont volunteer association held at Northfield, June 22nd and 23rd, 1893..." (64 p.) and "Memorial days in Montpelier, Vt., 1924 program" (13 p.)
Resumo:
Advertisements for publisher's Elegant Books at end of volume.
Resumo:
Four blank pages at end of volume for "Notes of our trip through the Yellowstone national park."