887 resultados para Embedded robotics
Resumo:
With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the students were able to effectively relate their problem solving strategies to real-world contexts. The qualitative study involved 23 Grade 6 students participating in robotics activities. The study included data collected from researcher observations of student problem solving discussions, collected software programs, and data from a student completed questionnaire. Results from the study indicated that the robotic activities assisted students to reflect on the problem-solving decisions they made. The study also highlighted that the students were able to relate their problem solving strategies to real-world contexts. The study demonstrated that while LEGO robotics can be considered useful problem solving tools in the classroom, careful teacher scaffolding needs to be implemented in regards to correlating LEGO with authentic problem solving. Further research in regards to how teachers can best embed real-world contexts into effective robotics lessons is recommended.
Resumo:
The practice of robotics and computer vision each involve the application of computational algorithms to data. The research community has developed a very large body of algorithms but for a newcomer to the field this can be quite daunting. For more than 10 years the author has maintained two open-source MATLAB® Toolboxes, one for robotics and one for vision. They provide implementations of many important algorithms and allow users to work with real problems, not just trivial examples. This new book makes the fundamental algorithms of robotics, vision and control accessible to all. It weaves together theory, algorithms and examples in a narrative that covers robotics and computer vision separately and together. Using the latest versions of the Toolboxes the author shows how complex problems can be decomposed and solved using just a few simple lines of code. The topics covered are guided by real problems observed by the author over many years as a practitioner of both robotics and computer vision. It is written in a light but informative style, it is easy to read and absorb, and includes over 1000 MATLAB® and Simulink® examples and figures. The book is a real walk through the fundamentals of mobile robots, navigation, localization, arm-robot kinematics, dynamics and joint level control, then camera models, image processing, feature extraction and multi-view geometry, and finally bringing it all together with an extensive discussion of visual servo systems.
Resumo:
Natural convection flow from an isothermal vertical plate with uniform heat source embedded in a stratified medium has been discussed in this paper. The resulting momentum and energy equations of boundary layer approximation are made non-similar by introducing the usual non-similarity transformations. Numerical solutions of these equations are obtained by an implicit finite difference method for a wide range of the stratification parameter, X. The solutions are also obtained for different values of pertinent parameters, namely, the Prandtl number, Pr and the heat generation or absorption parameter, λ and are expressed in terms of the local skin-friction and local heat transfer, which are shown in the graphical form. Effect of heat generation or absorption on the streamlines and isotherms are also shown graphically for different values of λ.
Resumo:
Defence organisations perform information security evaluations to confirm that electronic communications devices are safe to use in security-critical situations. Such evaluations include tracing all possible dataflow paths through the device, but this process is tedious and error-prone, so automated reachability analysis tools are needed to make security evaluations faster and more accurate. Previous research has produced a tool, SIFA, for dataflow analysis of basic digital circuitry, but it cannot analyse dataflow through microprocessors embedded within the circuit since this depends on the software they run. We have developed a static analysis tool that produces SIFA compatible dataflow graphs from embedded microcontroller programs written in C. In this paper we present a case study which shows how this new capability supports combined hardware and software dataflow analyses of a security critical communications device.
Resumo:
Data flow analysis techniques can be used to help assess threats to data confidentiality and integrity in security critical program code. However, a fundamental weakness of static analysis techniques is that they overestimate the ways in which data may propagate at run time. Discounting large numbers of these false-positive data flow paths wastes an information security evaluator's time and effort. Here we show how to automatically eliminate some false-positive data flow paths by precisely modelling how classified data is blocked by certain expressions in embedded C code. We present a library of detailed data flow models of individual expression elements and an algorithm for introducing these components into conventional data flow graphs. The resulting models can be used to accurately trace byte-level or even bit-level data flow through expressions that are normally treated as atomic. This allows us to identify expressions that safely downgrade their classified inputs and thereby eliminate false-positive data flow paths from the security evaluation process. To validate the approach we have implemented and tested it in an existing data flow analysis toolkit.
Resumo:
With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the students were able to effectively relate their problem solving strategies to real-world contexts. The qualitative study involved 23 Grade 6 students participating in robotics activities at a Brisbane primary school. The study included data collected from researcher observations of student problem solving discussions, collected software programs, and data from a student completed questionnaire. Results from the study indicated that the robotic activities assisted students to reflect on the problem solving decisions they made. The study also highlighted that the students were able to relate their problem solving strategies to real-world contexts. The study demonstrated that while LEGO robotics can be considered useful problem solving tools in the classroom, careful teacher scaffolding needs to be implemented in regards to correlating LEGO with authentic problem solving. Further research in regards to how teachers can best embed realworld contexts into effective robotics lessons is recommended.
Resumo:
The ninth release of the Toolbox, represents over fifteen years of development and a substantial level of maturity. This version captures a large number of changes and extensions generated over the last two years which support my new book “Robotics, Vision & Control”. The Toolbox has always provided many functions that are useful for the study and simulation of classical arm-type robotics, for example such things as kinematics, dynamics, and trajectory generation. The Toolbox is based on a very general method of representing the kinematics and dynamics of serial-link manipulators. These parameters are encapsulated in MATLAB ® objects - robot objects can be created by the user for any serial-link manipulator and a number of examples are provided for well know robots such as the Puma 560 and the Stanford arm amongst others. The Toolbox also provides functions for manipulating and converting between datatypes such as vectors, homogeneous transformations and unit-quaternions which are necessary to represent 3-dimensional position and orientation. This ninth release of the Toolbox has been significantly extended to support mobile robots. For ground robots the Toolbox includes standard path planning algorithms (bug, distance transform, D*, PRM), kinodynamic planning (RRT), localization (EKF, particle filter), map building (EKF) and simultaneous localization and mapping (EKF), and a Simulink model a of non-holonomic vehicle. The Toolbox also including a detailed Simulink model for a quadcopter flying robot.
Resumo:
This chapter explores the changing intellectual landscapes and market-led research within academic institutions as the rise of 'embedded criminology' and argues for knowledges of resistance.
Resumo:
This study investigates the value of a robotics-based school engagement experience for preservice teachers enrolled in a fourth year technology education curriculum unit and analyses their perceived abilities and confidence to design and implement engaging technology activities following this experience. Technology is a key learning area in Australian schools but research shows that most teachers find this subject challenging to teach. This could be attributed to teachers’ attitudes and their lack of knowledge, hence investigating preservice teachers’ involvement with technology may provide further insights. In this study, 30 preservice teachers used robotics to implement technology activities with 22 primary school students from a school in a low socio-economic area. Surveys were administered to ascertain the preservice teachers' perceptions of their school engagement experiences. The data gathered from the participants showed that they had gained confidence and knowledge from the experience and felt the engagement activity would assist them to develop and implement technology activities in their future classrooms.
Resumo:
This study investigates the value of a robotics-based school engagement experience for preservice teachers enrolled in a fourth year technology education curriculum unit and analyses their perceived abilities and confidence to design and implement engaging technology activities following this experience. Technology is a key learning area in Australian schools but research shows that most teachers find this subject challenging to teach. This could be attributed to teachers’ attitudes and their lack of knowledge, hence investigating preservice teachers’ involvement with technology may provide further insights. In this study, 30 preservice teachers used robotics to implement technology activities with 22 primary school students from a school in a low socio-economic area. Surveys were administered to ascertain the preservice teachers' perceptions of their school engagement experiences. The data gathered from the participants showed that they had gained confidence and knowledge from the experience and felt the engagement activity would assist them to develop and implement technology activities in their future classrooms.
Resumo:
Recent attention in education within many western contexts has focused on improved outcomes for students, with a particular focus on closing the gap between those who come from disadvantaged backgrounds and the rest of the student population. Much of this attention has supported a set of simplistic solutions to improving scores on high stakes standardized tests. The collateral damage (Nichols & Berliner, 2007) of such responses includes a narrowing of the curriculum, plateaus in gain scores on the tests, and unproductive blame games aimed by the media and politicians at teachers and communities (Nichols & Berliner, 2007; Synder, 2008). Alternative approaches to improving the quality and equity of schooling remain as viable alternatives to these measures. As an example in a recent study of school literacy reform in low SES schools, Luke, Woods and Dooley (2011) argued for the increase of substantive content and intellectual quality of the curriculum as a necessary means to re-engaging middle school students, improving outcomes of schooling and achieving a high quality, high equity system. The MediaClub is an afterschool program for students in years 4 to 7 (9-12 year old) at a primary school in a low SES area of a large Australian city. It is run as part of an Australian Research Council funded research project. The aim of the program has been to provide an opportunity for students to gain expertise in digital technologies and media literacies in an afterschool setting. It was hypothesized that this expertise might then be used to shift the ways of being literate that these students had to call on within classroom teaching and learning events. Each term, there is a different focus on digital media, and information and communication technology (ICT) activities in the MediaClub. The work detailed in this chapter relates to a robotics program presented as one of the modules within this afterschool setting. As part of the program, the participants were challenged to find creative solutions to problems in a constructivist-learning environment.
Resumo:
This paper presents a new approach for network upgrading to improve the penetration level of Small Scale Generators in residential feeders. In this paper, it is proposed that a common DC link can be added to LV network to alleviate the negative impact of increased export power on AC lines, allowing customers to inject their surplus power with no restrictions to the common DC link. In addition, it is shown that the proposed approach can be a pathway from current AC network to future DC network.
Resumo:
his study presents an improved method of dealing with embedded tax liabilities in portfolio choice. We argue that using a risk-free discount rate is appropriate for calculating the present value of future tax liabilities. Supportive of recent research, our results found a taxation-induced preference of holding equities over bonds, and a location preference of holding equities in the taxable account and bonds in retirement accounts. These important findings contrast with traditional investment advice which suggests a greater capacity for risk in retirement accounts.
Resumo:
This discussion has outlined a theoretical and pragmatic framework to demonstrate that future research involving the analysis of human performance in surgical should encourage the use of phenomenology to enhance the knowledge base of this area of study. Merging experiential (first-person) and experimental (third-person) methods may possibly help improve research designs and analyses in the investigation of robotics in surgical performance. By relying solely on third-person techniques, the current methodology and interpretation used to analyze human performance in surgical robotics is limited. Recent advances in cognitive science and psychology have also recognized this limitation and have now begun to shift to neurophenomenology. Finally, discussion on recent robotics research presented here demonstrates the potential phenomenology holds for augmenting the methodological and analysis techniques currently used by researchers of human performance in surgical robotics.