959 resultados para Embedded Cell Model
Resumo:
In recent years, there has been an enormous growth of location-aware devices, such as GPS embedded cell phones, mobile sensors and radio-frequency identification tags. The age of combining sensing, processing and communication in one device, gives rise to a vast number of applications leading to endless possibilities and a realization of mobile Wireless Sensor Network (mWSN) applications. As computing, sensing and communication become more ubiquitous, trajectory privacy becomes a critical piece of information and an important factor for commercial success. While on the move, sensor nodes continuously transmit data streams of sensed values and spatiotemporal information, known as ``trajectory information". If adversaries can intercept this information, they can monitor the trajectory path and capture the location of the source node. This research stems from the recognition that the wide applicability of mWSNs will remain elusive unless a trajectory privacy preservation mechanism is developed. The outcome seeks to lay a firm foundation in the field of trajectory privacy preservation in mWSNs against external and internal trajectory privacy attacks. First, to prevent external attacks, we particularly investigated a context-based trajectory privacy-aware routing protocol to prevent the eavesdropping attack. Traditional shortest-path oriented routing algorithms give adversaries the possibility to locate the target node in a certain area. We designed the novel privacy-aware routing phase and utilized the trajectory dissimilarity between mobile nodes to mislead adversaries about the location where the message started its journey. Second, to detect internal attacks, we developed a software-based attestation solution to detect compromised nodes. We created the dynamic attestation node chain among neighboring nodes to examine the memory checksum of suspicious nodes. The computation time for memory traversal had been improved compared to the previous work. Finally, we revisited the trust issue in trajectory privacy preservation mechanism designs. We used Bayesian game theory to model and analyze cooperative, selfish and malicious nodes' behaviors in trajectory privacy preservation activities.
Resumo:
The paper states an introduction, description and implementation of a PV cell under the variation of parameters. Analysis and observation of a different parameters variation of a PV cell are discussed here. To obtain the model for the purpose of analyzing an equivalent circuit with the consisting parameters a photo current source, a series resistor, a shunt resistor and a diode is used. The fundamental equation of PV cell is used to study the model and to analyze and best fit observation data. The model can be used in measuring and understanding the behaviour of photovoltaic cells for certain changes in PV cell parameters. A numerical method is used to analyze the parameters sensitivity of the model to achieve the expected result and to understand the deviation of changes in different parameters situation at various conditions respectively. The ideal parameters are used to study the models behaviour. It is also compared the behaviour of current-voltage and power-voltage by comparing with produced maximum power point though it is a challenge to optimize the output with real time simulation. The whole working process is also discussed and an experimental work is also done to get the closure and insight about the produced model and to decide upon the validity of the discussed model.
Resumo:
In this paper, a supervisor system, able to diagnose different types of faults during the operation of a proton exchange membrane fuel cell is introduced. The diagnosis is developed by applying Bayesian networks, which qualify and quantify the cause-effect relationship among the variables of the process. The fault diagnosis is based on the on-line monitoring of variables easy to measure in the machine such as voltage, electric current, and temperature. The equipment is a fuel cell system which can operate even when a fault occurs. The fault effects are based on experiments on the fault tolerant fuel cell, which are reproduced in a fuel cell model. A database of fault records is constructed from the fuel cell model, improving the generation time and avoiding permanent damage to the equipment. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The residence time distribution and mean residence time of a 10% sodium bicarbonate solution that is dried in a conventional spouted bed with inert bodies were measured with the stimulus-response method. Methylene blue was used as a chemical tracer, and the effects of the paste feed mode, size distribution of the inert bodies, and mean particle size on the residence times and dried powder properties were investigated. The results showed that the residence time distributions could be best reproduced with the perfect mixing cell model or N = 1 for the continuous stirred tank reactor in a series model. The mean residence times ranged from 6.04 to 12.90 min and were significantly affected by the factors studied. Analysis of variance on the experimental data showed that mean residence times were affected by the mean diameter of the inert bodies at a significance level of 1% and by the size distribution at a level of 5%. Moreover, altering the paste feed from dripping to pneumatic atomization affected mean residence time at a 5% significance level. The dried powder characteristics proved to be adequate for further industrial manipulation, as demonstrated by the low moisture content, narrow range of particle size, and good flow properties. The results of this research are significant in the study of the drying of heat-sensitive materials because it shows that by simultaneously changing the size distribution and average size of the inert bodies, the mean residence times of a paste can be reduced by half, thus decreasing losses due to degradation.
Resumo:
Nanocomposite materials have received considerable attention in recent years due to their novel properties. Grain boundaries are considered to play an important role in nanostructured materials. This work focuses on the finite element analysis of the effect of grain boundaries on the overall mechanical properties of aluminium/alumina composites. A grain boundary is incorporated into the commonly used unit cell model to investigate its effect on material properties. By combining the unit cell model with an indentation model, coupled with experimental indentation measurements, the ''effective'' plastic property of the grain boundary is estimated. In addition, the strengthening mechanism is also discussed based on the Estrin-Mecking model.
Resumo:
This investigation focused on the finite element analyses of elastic and plastic properties of aluminium/alumina composite materials with ultrafine microstructure. The commonly used unit cell model was used to predict the elastic properties. By combining the unit cell model with an indentation model, coupled with experimental indentation measurements, the plastic properties of the composites and the associated strengthening mechanism within the metal matrix material were investigated. The grain size of the matrix material was found to be an important factor influencing the mechanical properties of the composites studied. (C) 1997 Elsevier Science S.A.
Resumo:
Neste trabalho serão apresentados e discutidos vários aspectos relacionados com células de combustível, com particular enfoque na modelação de células de combustível de membrana de permuta protónica. Este trabalho está dividido em vários capítulos. No Capítunlo 1 são apresentadas as motivações e os objectivos da tese. No Capítulo 2 serão apresentadas as células de combustível em geral, a sua origem, os diversos tipos, o que as diferencia das restantes tecnologias de geração de energia e as suas vantagens e desvantagens. No Capítulo 3 discute-se a modelação de células de combustível. Serão expostos e explicados os diferentes tipos de modelos, seguindo-se uma apresentação do modelo selecionado para estudo, com referência aos fundamentos teóricos exposição detalhada da fórmulação matemática e os parâmetros que caracterizam o modelo. É também apresentado a implementação do modelo em Matlab/Simulink. No Capítulo 4 será discutida e apresentada a abordagem utilizada para a identificação dos parâmetros do modelo da célula de combustível. Propõe-se e prova-se que uma abordagem baseada num algoritmo de optimização inteligente proporciona um método eficaz e preciso para a identificação dos parâmetros. Esta abordagem requer a existência de alguns dados experimentais que são também apresentados. O algoritmo utilizado designa-se por Optimização por Enxame de Partículas – Particle Swarm Optimization (PSO). São apresentados os seus fundamentos, características, implementação em Matlab/Simulink e a estratégia de optimização, isto é, a configuração do algoritmo, a definição da função objectivo e limites de variação dos parâmetros. São apresentados os resultados do processo de optimização, resultados adicionais de validação do modelo, uma análise de robustez do conjunto óptimo de parâmetros e uma análise de sensibilidade dos mesmos. O trabalho termina apresentando, no último capítulo, algumas conclusões, das quais se destacam: - O bom desempenho do algoritmo PSO para a identificação dos parâmetros do modelo da célula de combsutível; - Uma robustez interessante do algoritmo PSO, no sentido em que, para várias execuções do método resultam valores do parâmetros e da função objectivo com variabilidade bastante reduzidas; - Um bom modelo da célula de combustível, que quando caracterizado pelo conjunto óptimo de parâmetros, apresenta, sistematicamente, erros relativos médios inferiores a 2,5% para um conjunto alargado de condições de funcionamento.
Resumo:
A presença de metais pesados no meio ambiente deve-se, principalmente, a actividades antropogénicas. Ao contrário do Cu e do Zn, que em baixas concentrações são essenciais para o normal funcionamento celular, não se conhece para o chumbo nenhuma função biológica. O chumbo apresenta efeitos tóxicos, e considerado possível agente carcinogéneo, sendo classificado como poluente prioritário pela Agencia de Protecção Ambiental dos EUA (US-EPA). O presente trabalho teve como objetivo avaliar o papel da glutationa e do vacúolo, como mecanismos de defesa, contra os efeitos tóxicos induzidos pelo chumbo, usando como modelo a levedura Saccharomyces cerevisiae. A levedura S. cerevisiae quando exposta a varias concentrações de chumbo, durante 3h, perde a viabilidade e acumula espécies reativas de oxigénio (ROS). O estudo comparativo da perda de viabilidade e acumulação de ROS em células de uma estirpe selvagem (WT) e de estirpes mutantes, incapazes de produzir glutationa devido a uma deficiência no gene GSH1 (gsh1) ou GSH2 (gsh2) mostrou que as estirpes gsh1 ou(gsh2 não apresentavam um aumento da sensibilidade ao efeito toxico do chumbo. No entanto, o tratamento de células da estirpe WT com iodoacetamida (um agente alquilante que induz a depleção de glutationa) aumentou a sensibilidade das células a presença de chumbo. Pelo contrário, o enriquecimento em GSH, através da incubação de células WT com glucose e uma mistura de aminoácidos que constituem a GSH (acido L-glutâmico, L-cisteína e glicina), reduziu o stress oxidativo e a perda de viabilidade induzida por chumbo. A importância do vacúolo, como mecanismo de defesa, foi avaliada através da utilização de um mutante sem qualquer estrutura vacuolar (vps16) ou de mutantes deficientes na subunidade catalítica A (vma1) ou B (vma2) ou no proteolítico - subunidade C (vma3) da V-ATPase. As células da estirpe ƒ´vps16 apresentaram uma elevada suscetibilidade a presença de chumbo. As células das estirpes deficientes na subunidade A, B ou c da V-ATPase, apresentaram uma maior perda de viabilidade, quando expostas a chumbo, do que as células da estirpe WT, mas menor do que a da estirpe vps16 Em conclusão, os resultados obtidos, no seu conjunto, sugerem que a glutationa esta envolvida na defesa contra a toxicidade provocada por chumbo; todavia, a glutationa, por si só, parece não ser suficiente para suster o stress oxidativo e a perda de viabilidade induzida por chumbo. O vacúolo parece constituir um importante mecanismo de defesa contra a toxicidade provocada por chumbo. A V-ATPase parece estar envolvida na compartimentação de chumbo no vacúolo.
Resumo:
This work aims to evaluate the feasibility of using image-based cytometry (IBC) in the analysis of algal cell quantification and viability, using Pseudokirchneriella subcapitata as a cell model. Cell concentration was determined by IBC to be in a linear range between 1 × 105 and 8 × 106 cells mL−1. Algal viability was defined on the basis that the intact membrane of viable cells excludes the SYTOX Green (SG) probe. The disruption of membrane integrity represents irreversible damage and consequently results in cell death. Using IBC, we were able to successfully discriminate between live (SG-negative cells) and dead algal cells (heat-treated at 65 °C for 60 min; SG-positive cells). The observed viability of algal populations containing different proportions of killed cells was well correlated (R 2 = 0.994) with the theoretical viability. The validation of the use of this technology was carried out by exposing algal cells of P. subcapitata to a copper stress test for 96 h. IBC allowed us to follow the evolution of cell concentration and the viability of copper-exposed algal populations. This technology overcomes several main drawbacks usually associated with microscopy counting, such as labour-intensive experiments, tedious work and lack of the representativeness of the cell counting. In conclusion, IBC allowed a fast and automated determination of the total number of algal cells and allowed us to analyse viability. This technology can provide a useful tool for a wide variety of fields that utilise microalgae, such as the aquatic toxicology and biotechnology fields.
Resumo:
Countries are currently faced with problems derived from changes in lifespan and an increase in lifestyle-related diseases. Neurodegenerative disorders such Parkinson’s (PD) and Alzheimer’s (AD) diseases are an increasing problem in aged societies. Data from World Alzheimer Report 2011 indicate that 36 million people worldwide are living with dementia. Oxidative stress has been associated with the development of AD and PD. Therefore there is interest to search for effective compounds or therapies to combat the oxidative damage in these diseases. Current evidence strongly supports a contribution of phenolic compounds present in fruits and vegetables to the prevention of neurodegenerative diseases such AD and PD. The industrial processing of a wide variety of fruits results in the accumulation of by-products without commercial value. Opuntia ficus-indica (cactus pear) is consumed fresh and processed like in juice. Prunnus avium (sweet cherry) is consumed fresh but the organoleptics characteristics of the fruits leads to the smaller and ragged fruits have no commercial value. Fruit extracts of both species has described to be rich in phenolic compounds and to have high antioxidant activities due to its composition. The aim of this work was assessing the efficacy of O. ficus-indica and P. avium by-products extracts obtained with conventional solvent extraction and pressurized liquid extraction in a neurodegeneration cell model. All extracts have protected neuroblastoma cells from H2O2-induced death at low, non-toxic levels, which approach to physiologically-relevant serum concentration. However, cherry extract has a slighter neuroprotective activity. The protective effect of Opuntia extracts are not conducted by a direct antioxidant activity since there are not decreases in intracellular ROS levels in cell treated with extracts and challenged with H2O2, while cherry extract neuroprotection seems to be due to a direct scavenging activity. Extracts from different biological matrixes seems to protect neuronal cells trough different cellular mechanisms.
Resumo:
Neurological disorders are a major concern in modern societies, with increasing prevalence mainly related with the higher life expectancy. Most of the current available therapeutic options can only control and ameliorate the patients’ symptoms, often be-coming refractory over time. Therapeutic breakthroughs and advances have been hampered by the lack of accurate central nervous system (CNS) models. The develop-ment of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of novel therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmentally, anatomically and physiologically) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity). The in vitro recapitulation of CNS phenotypic and functional features requires the implementation of advanced culture strategies that enable to mimic the in vivo struc-tural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. This thesis aimed at the development of novel human 3D in vitro CNS models by integrat-ing agitation-based culture systems and a wide array of characterization tools. Neural differentiation of hNSC as 3D neurospheres was explored in Chapter 2. Here, it was demonstrated that human midbrain-derived neural progenitor cells from fetal origin (hmNPC) can generate complex tissue-like structures containing functional dopaminergic neurons, as well as astrocytes and oligodendrocytes. Chapter 3 focused on the development of cellular characterization assays for cell aggregates based on light-sheet fluorescence imaging systems, which resulted in increased spatial resolu-tion both for fixed samples or live imaging. The applicability of the developed human 3D cell model for preclinical research was explored in Chapter 4, evaluating the poten-tial of a viral vector candidate for gene therapy. The efficacy and safety of helper-dependent CAV-2 (hd-CAV-2) for gene delivery in human neurons was evaluated, demonstrating increased neuronal tropism, efficient transgene expression and minimal toxicity. The potential of human 3D in vitro CNS models to mimic brain functions was further addressed in Chapter 5. Exploring the use of 13C-labeled substrates and Nucle-ar Magnetic Resonance (NMR) spectroscopy tools, neural metabolic signatures were evaluated showing lineage-specific metabolic specialization and establishment of neu-ron-astrocytic shuttles upon differentiation. Chapter 6 focused on transferring the knowledge and strategies described in the previous chapters for the implementation of a scalable and robust process for the 3D differentiation of hNSC derived from human induced pluripotent stem cells (hiPSC). Here, software-controlled perfusion stirred-tank bioreactors were used as technological system to sustain cell aggregation and dif-ferentiation. The work developed in this thesis provides practical and versatile new in vitro ap-proaches to model the human brain. Furthermore, the culture strategies described herein can be further extended to other sources of neural phenotypes, including pa-tient-derived hiPSC. The combination of this 3D culture strategy with the implemented characterization methods represents a powerful complementary tool applicable in the drug discovery, toxicology and disease modeling.
Resumo:
Doctoral Thesis (PhD Programm on Molecular and Environmental Biology)
Resumo:
Programa Doutoral em Biologia Molecular e Ambiental
Resumo:
The terminal differentiation of neuronal and pancreatic beta-cells requires the specific expression of genes that are targets of an important transcriptional repressor named RE-1 silencing transcription factor (REST). The molecular mechanism by which these REST target genes are expressed only in neuronal and beta-cells and are repressed by REST in other tissues is a central issue in differentiation program of neuronal and beta-cells. Herein, we showed that the transcriptional factor Sp1 was required for expression of most REST target genes both in insulin-secreting cells and neuronal-like cells where REST is absent. Inhibition of REST in a non-beta and a non-neuronal cell model restored the transcriptional activity of Sp1. This activity was also restored by trichostatin A indicating the requirement of histone deacetylases for the REST-mediated silencing of Sp1. Conversely, exogenous introduction of REST blocked Sp1-mediated transcriptional activity. The REST inhibitory effect was mediated through its C-terminal repressor domain, which could interact with Sp1. Taken together, these data show that the inhibition of Sp1 by REST is required for the silencing of its target genes expression in non-neuronal and in non-beta-cells. We conclude that the interplay between REST and Sp1 determines the cell-specific expression of REST target genes.
Resumo:
L-2-Amino-4-methoxy-trans-3-butenoic acid (AMB) is a toxic antimetabolite produced by the opportunistic pathogen Pseudomonas aeruginosa. To evaluate its importance as a potential virulence factor, we tested the host response towards AMB using an Acanthamoeba castellanii cell model. We found that AMB (at concentrations ≥ 0.5 mM) caused amoebal encystment in salt buffer, while inhibiting amoebal growth in rich medium in a dose-dependent manner. However, no difference in amoebal plaque formation was observed on bacterial lawns of wild type and AMB-negative P. aeruginosa strains. We thereby conclude that AMB may eventually act as a virulence factor, but only at relatively high concentrations.