917 resultados para Elliptic Galaxies
Ultra-compact dwarf galaxies: a new class of compact stellar system discovered in the Fornax Cluster
Resumo:
We have used the 2dF spectrograph on the Anglo-Australian Telescope to obtain a complete spectroscopic sample of all objects in the magnitude range, 16.5 < bj < 19.8, regardless of morphology, in an area centred on the Fornax Cluster of galaxies. Among the unresolved targets are five objects which are members of the Fornax Cluster. They are extremely compact stellar systems with scale lengths less than 40 parsecs. These ultra-compact dwarfs are unlike any known type of stellar system, being more compact and significantly less luminous than other compact dwarf galaxies, yet much brighter than any globular cluster.
Resumo:
We study the existence of nonnegative solutions of elliptic equations involving concave and critical Sobolev nonlinearities. Applying various variational principles we obtain the existence of at least two nonnegative solutions.
Resumo:
Dissertação apresentada para obtenção do grau de Doutor em Matemática na especialidade de Equações Diferenciais, pela Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia
Resumo:
Dissertação para obtenção do Grau de Doutor em Matemática
Resumo:
Se propone el estudio de galaxias en diferentes tipos de sistemas para lograr un mejor entendimiento de los procesos físicos que actúan en la formación y evolución de estas galaxias. En particular, se analizarán las propiedades de galaxias en cúmulos, grupos difusos, grupos compactos y grupos fósiles. Para el desarrollo de este trabajo, se utilizarán catálogos observacionales públicos y propios, simulaciones cosmológicas combinadas con modelos semianalíticos y catálogos sintéticos basados en dichas simulaciones. Entender el comportamiento de las galaxias pertenecientes a cada clase de sistema permitirá la comparación entre los distintos entornos y posteriormente, la distinción de los diferentes procesos astrofísicos que actúan.
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2009
Resumo:
We prove a formula for the multiplicities of the index of an equivariant transversally elliptic operator on a G-manifold. The formula is a sum of integrals over blowups of the strata of the group action and also involves eta invariants of associated elliptic operators. Among the applications, we obtain an index formula for basic Dirac operators on Riemannian foliations, a problem that was open for many years.
Resumo:
We prove a formula for the multiplicities of the index of an equivariant transversally elliptic operator on a G-manifold. The formula is a sum of integrals over blowups of the strata of the group action and also involves eta invariants of associated elliptic operators. Among the applications, we obtain an index formula for basic Dirac operators on Riemannian foliations, a problem that was open for many years.
Resumo:
Caustics are curves with the property that a billiard trajectory, once tangent to it, stays tangent after every reflection at the boundary of the billiard table. When the billiard table is an ellipse, any nonsingular billiard trajectory has a caustic, which can be either a confocal ellipse or a confocal hyperbola. Resonant caustics —the ones whose tangent trajectories are closed polygons— are destroyed under generic perturbations of the billiard table. We prove that none of the resonant elliptical caustics persists under a large class of explicit perturbations of the original ellipse. This result follows from a standard Melnikov argument and the analysis of the complex singularities of certain elliptic functions.