948 resultados para Electron-transfer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of meso-phenyloctamethylporphyrins covalently bonded at the 4'phenyl position to quinones via rigid bicyclo[2.2.2]octane spacers were synthesized for the study of the dependence of electron transfer reaction rate on solvent, distance, temperature, and energy gap. A general and convergent synthesis was developed based on the condensation of ac-biladienes with masked quinonespacer-benzaldehydes. From picosecond fluorescence spectroscopy emission lifetimes were measured in seven solvents of varying polarity. Rate constants were determined to vary from 5.0x109sec-1 in N,N-dimethylformamide to 1.15x1010 Sec-1 in benzene, and were observed to rise at most by about a factor of three with decreasing solvent polarity. Experiments at low temperature in 2-MTHF glass (77K) revealed fast, nearly temperature-independent electron transfer characterized by non-exponential fluorescence decays, in contrast to monophasic behavior in fluid solution at 298K. This example evidently represents the first photosynthetic model system not based on proteins to display nearly temperature-independent electron transfer at high temperatures (nuclear tunneling). Low temperatures appear to freeze out the rotational motion of the chromophores, and the observed nonexponential fluorescence decays may be explained as a result of electron transfer from an ensemble of rotational conformations. The nonexponentiality demonstrates the sensitivity of the electron transfer rate to the precise magnitude of the electronic matrix element, which supports the expectation that electron transfer is nonadiabatic in this system. The addition of a second bicyclooctane moiety (15 Å vs. 18 Å edge-to-edge between porphyrin and quinone) reduces the transfer rate by at least a factor of 500-1500. Porphyrinquinones with variously substituted quinones allowed an examination of the dependence of the electron transfer rate constant κET on reaction driving force. The classical trend of increasing rate versus increasing exothermicity occurs from 0.7 eV≤ |ΔG0'(R)| ≤ 1.0 eV until a maximum is reached (κET = 3 x 108 sec-1 rising to 1.15 x 1010 sec-1 in acetonitrile). The rate remains insensitive to ΔG0 for ~ 300 mV from 1.0 eV≤ |ΔG0’(R)| ≤ 1.3 eV, and then slightly decreases in the most exothermic case studied (cyanoquinone, κET = 5 x 109 sec-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The storage of photoexcited electron-hole pairs is experimentally carried out and theoretically realized by transferring electrons in both real and k spaces through resonant Gamma - X in an AlAs/GaAs heterostructure. This is proven by the peculiar capacitance jump and hysteresis in the measured capacitance-voltage curves. Our structure may be used as a photonic memory cell with a long storage time and a fast retrieval of photons as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A generalized scattering matrix formalism is constructed to elucidate the interplay of electron resonance, coherence, dephasing, inelastic scattering, and heterogeneity, which play important roles in the physics of long-range electron transfer/transport. The theory consists of an extension of the standard Buttiker phase-breaking model and an analytical expression of the electron transmission coefficient for donor-bridge-acceptor systems with arbitrary length and sequence. The theory incorporates the following features: Dephasing-assisted off-resonance enhancement, inelasticity-induced turnover, resonance enhancement and its dephasing-induced suppression, dephasing-induced smooth superexchange-hopping transition, and heterogeneity effects. (C) 2002 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the Buttiker dephasing model, we propose an analytical scattering matrix approach to the long-range electron transfer phenomena. The present efficient scheme smoothly interpolates between the superexchange and the sequential hopping mechanisms. Various properties such as the drastic dephasing-assisted enhancement and turnover behaviors are demonstrated in good agreement with those obtained via the dynamical reduced density-matrix methods. These properties are further elucidated as results of the interplay among the dephasing strength, the tunneling parameter, and the bridge length of the electron transfer system. (C) 2001 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider electron capture in fast collisions between a proton and hydrogen in the presence of an intense x-ray laser whose angular frequency omega is close to v(2)/2, where v is the collision velocity. We show that in such a case laser-induced capture becomes possible and that the latter proceeds via both induced photon emission and photon absorption channels and can, in principle, compete with kinematic and radiative electron capture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We experimentally investigate the shell effect on the stabilization processes following the multi-electron transfer in slow collisions of Arq+-Ar (q = 6-9, It) The relative cross-section ratios of multi-electron transfer and of the subsequent stabilization with respect to single-electron capture are measured meanwhile compared with the theoretical results predicted by the classical over-barrier model. Our result indicates that the multi-electron transfer is dominant when the projectile charge is large and the subsequent stabilization shows a dramatic variation if the projectile L-shell configuration becomes open. It shows that the subsequent stabilization processes of multiply excited scattering ions have a strong dependence on the projectile shell. (C) 2010 Elsevier BV All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stabilization ratios.. for double-electron transfer, i.e., the cross section ratios of true double capture to total double-electron transfer, are measured in O6++ He, Ne and Ar collisions at 6 keV/u. A high.. value about 68% is obtained for the He target, while for the Ar target, the.. value is only 8%. The high R value for the He target is due to the significant direct population of the (2l, nl') configurations with high n For the Ar target, the (quasi) symmetric configurations (3l, nl') lead to the much lower.. value. Neglecting the core effects, the O6+ ion can be taken as a bare ion C6+ except the occupied 1s shell, and then the measured R values are compared with previous experimental results of C6+ projectile ions at similar impact velocity. It yields good agreement with the Ne and Ar target, while the occupied 1s shell for the O6++ He system results in a higher R value than that in C6++He collisions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structures, properties and electron transfer reactivity of the ClO/ClO+ coupling system are studied in this paper at ab initio (HF and MP2) levels and the density functional theory (DFT: B3LYP, B3P86, B3PW91) levels employing 6311 + G(3df) basis set and on the basis of the golden-rule of the time-dependent perturbation theory. Investigations indicate that the results got from the B3LYP method employing 6-311 + G(3df) basis set is in excellent agreement with the experiment. The activation energies, the stabilization energies and the electronic coupling matrix elements have also been calculated by using the B3LYP/6-311 + G(3df) method, and then the electron transfer rates are determined at this level. The electronic coupling matrix element of EC.6 is very small, only 0.03 kcal/mol, while that of EC.7 is the biggest, being 12.41 kcal/mol, the corresponding electron transfer rate is also the fastest among these seven encounter complexes. The averaged electron transfer rate is about 1.672 X 10(11) M-1 s(-1). It is indicated that the structures optimized by B3LYP method are more reliable than the results got from the other four methods. It also testified that the electronic coupling matrix element is the vital factor that significantly affects the electron transfer rate. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structures, properties and electron transfer reactivity of the ClO/ClO- coupling system are studied in this paper at ab initio (UHF and UMP2) levels and the Density Functional Theory (DFT: UB3LYP, UB3P86, UB3PW91) levels employing 6311 + G(3df) basis set and on the basis of the Golden-rule of the time-dependent perturbation theory. Investigations indicate that the results obtained using the UB3LYP method employing 6-311 + G(3df) basis set is in excellent agreement with the experiment. For this coupling system, six stable coupling modes have been found which correspond to six different encounter complexes and denote six different electron transfer mechanism: four O-O directly linked structures (one collinear: D-h, one anti-parallel: C-s, two twist: C-2) and two Cl-O linked structures (cis- and anti- C-s structures). The activation energies, the stabilization energies and the electronic coupling matrix elements have also been calculated for the electron transfer reactions via these six different mechanism at the UB3LYP/6-311 + G(3df) level, and then the electron transfer rates are determined at the same level. The most favorable coupling mode to the electron transfer is the anti-parallel mechanism. The averaged electron transfer rate is about 5.58 X 10(11) M-1 s(-1). It is also implied that the B3LYP method can give more reasonable results for the electron transfer reactivity of this system. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both the behavior and the general key factors for assembling flexible SWNT films at the water/oil interface were investigated; the electron transfer, one of the most fundamental chemical processes, at the SWNT-sandwiched water/oil interface was also firstly illustrated using scanning electrochemical microscopy.