980 resultados para Electron spin resonance (ESR)
Resumo:
We developed a procedure to take advantage of the magnetic-field-modulation-frequency effect on the line shape of conduction-electron-spin resonance of graphite intercalation compounds (GIC's) to extract the absolute value of the in-plane resistivity. We calculated the power absorbed in each slice of the sample normal to the wave penetration, multiplied by a factor to account for the magnetic-field-modulation-frequency effect. Room-temperature spectra of stage-I AlCl3-intercalated GIC in both H-0 perpendicular-to c and H-0 parallel-to c configurations were fitted to the theoretical line shapes and the value of in-plane resistivity (and also the value of c-axis resistivity) obtained from the fitting parameters are in reasonable agreement with those from the literature.
Resumo:
Some synthetic metals show in addition to good conductivity, high microwave dielectric constants. In this work, it is shown how conduction-electron spin resonance(CESR) lineshape can be affected by these high constants. The conditions for avoiding these effects in the CESR measurements are discussed as well as a method for extracting microwave dielectric constants from CESR lines. (C) 1995 Academic Press, Inc.
Resumo:
The Standard Model of particle physics consists of the quantum electrodynamics (QED) and the weak and strong nuclear interactions. The QED is the basis for molecular properties, and thus it defines much of the world we see. The weak nuclear interaction is responsible for decays of nuclei, among other things, and in principle, it should also effects at the molecular scale. The strong nuclear interaction is hidden in interactions inside nuclei. From the high-energy and atomic experiments it is known that the weak interaction does not conserve parity. Consequently, the weak interaction and specifically the exchange of the Z^0 boson between a nucleon and an electron induces small energy shifts of different sign for mirror image molecules. This in turn will make the other enantiomer of a molecule energetically favorable than the other and also shifts the spectral lines of the mirror image pair of molecules into different directions creating a split. Parity violation (PV) in molecules, however, has not been observed. The topic of this thesis is how the weak interaction affects certain molecular magnetic properties, namely certain parameters of nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopies. The thesis consists of numerical estimates of NMR and ESR spectral parameters and investigations of the effects of different aspects of quantum chemical computations to them. PV contributions to the NMR shielding and spin-spin coupling constants are investigated from the computational point of view. All the aspects of quantum chemical electronic structure computations are found to be very important, which makes accurate computations challenging. Effects of molecular geometry are also investigated using a model system of polysilyene chains. PV contribution to the NMR shielding constant is found to saturate after the chain reaches a certain length, but the effects of local geometry can be large. Rigorous vibrational averaging is also performed for a relatively small and rigid molecule. Vibrational corrections to the PV contribution are found to be only a couple of per cents. PV contributions to the ESR g-tensor are also evaluated using a series of molecules. Unfortunately, all the estimates are below the experimental limits, but PV in some of the heavier molecules comes close to the present day experimental resolution.
Resumo:
X-band electron spin resonance (ESR) studies of (CrO4)2- doped, X-irradiated single crystals of ferroelectric ammonium sulphate ((NH4)2SO4, TC = 223 K) at 300 and 208 K are reported. The paramagnetic centre responsible for the ESR spectrum is identified to be Cr5+. Superhyperfine interaction of the unpaired electron with two equivalent protons is observed. The spin-Hamiltonian parameters which are nearly axial at 300 K, with g < g indicating a dx2-y2 orbital ground state, acquired rhombic character below TC indicating a distortion of the sulphate tetrahedron. An increase in the value of the proton superhyperfine constant in the ferroelectric phase is indicative of stronger hydrogen bonding.
Resumo:
A novel spectroscopy of trapped ions is proposed which will bring single-ion detection sensitivity to the observation of magnetic resonance spectra. The approaches developed here are aimed at resolving one of the fundamental problems of molecular spectroscopy, the apparent incompatibility in existing techniques between high information content (and therefore good species discrimination) and high sensitivity. Methods for studying both electron spin resonance (ESR) and nuclear magnetic resonance (NMR) are designed. They assume established methods for trapping ions in high magnetic field and observing the trapping frequencies with high resolution (<1 Hz) and sensitivity (single ion) by electrical means. The introduction of a magnetic bottle field gradient couples the spin and spatial motions together and leads to a small spin-dependent force on the ion, which has been exploited by Dehmelt to observe directly the perturbation of the ground-state electron's axial frequency by its spin magnetic moment.
A series of fundamental innovations is described m order to extend magnetic resonance to the higher masses of molecular ions (100 amu = 2x 10^5 electron masses) and smaller magnetic moments (nuclear moments = 10^(-3) of the electron moment). First, it is demonstrated how time-domain trapping frequency observations before and after magnetic resonance can be used to make cooling of the particle to its ground state unnecessary. Second, adiabatic cycling of the magnetic bottle off between detection periods is shown to be practical and to allow high-resolution magnetic resonance to be encoded pointwise as the presence or absence of trapping frequency shifts. Third, methods of inducing spindependent work on the ion orbits with magnetic field gradients and Larmor frequency irradiation are proposed which greatly amplify the attainable shifts in trapping frequency.
The dissertation explores the basic concepts behind ion trapping, adopting a variety of classical, semiclassical, numerical, and quantum mechanical approaches to derive spin-dependent effects, design experimental sequences, and corroborate results from one approach with those from another. The first proposal presented builds on Dehmelt's experiment by combining a "before and after" detection sequence with novel signal processing to reveal ESR spectra. A more powerful technique for ESR is then designed which uses axially synchronized spin transitions to perform spin-dependent work in the presence of a magnetic bottle, which also converts axial amplitude changes into cyclotron frequency shifts. A third use of the magnetic bottle is to selectively trap ions with small initial kinetic energy. A dechirping algorithm corrects for undesired frequency shifts associated with damping by the measurement process.
The most general approach presented is spin-locked internally resonant ion cyclotron excitation, a true continuous Stern-Gerlach effect. A magnetic field gradient modulated at both the Larmor and cyclotron frequencies is devised which leads to cyclotron acceleration proportional to the transverse magnetic moment of a coherent state of the particle and radiation field. A preferred method of using this to observe NMR as an axial frequency shift is described in detail. In the course of this derivation, a new quantum mechanical description of ion cyclotron resonance is presented which is easily combined with spin degrees of freedom to provide a full description of the proposals.
Practical, technical, and experimental issues surrounding the feasibility of the proposals are addressed throughout the dissertation. Numerical ion trajectory simulations and analytical models are used to predict the effectiveness of the new designs as well as their sensitivity and resolution. These checks on the methods proposed provide convincing evidence of their promise in extending the wealth of magnetic resonance information to the study of collisionless ions via single-ion spectroscopy.
Resumo:
The BaB4O7:Eu, Tb phosphors are first synthesized in air atmosphere. We investigate their luminescent properties, and find that europium(II) and europium(III) can coexist in the BaB4O7:Eu phosphor. We observed that the relative intensity of europium(II) is increased when terbium(III) is incorporated. The electron spin resonance (ESR) spectra are carried out. The intensity of ESR peaks corresponding to europium(II) is also increased when terbium(III) is increased, so the valency state of europium is influenced by terbium(III). We explain these phenomena by an electron transfer mechanism. (C) 1996 Academic Press, Inc.
Resumo:
Silicalite-I, ZSM-5, and Fe-ZSM-5 zeolites prepared from two different silicon sources are characterized by UV resonance Raman (UVRR) spectroscopy, X-ray diffraction (XRD), electron spin resonance (ESR), and UV/visible diffuse reflectance spectroscopy (UV/Vis DRS). A new technique for investigating zeolitic structure, UV resonance Raman spectroscopy selectively enhances the Raman bands associated with framework iron atoms incorporated into MFI-type zeolites, and it is very sensitive in identifying the iron atoms in the framework of zeolites, while other techniques such as XRD, ESR, and UV/Vis DRS have failed in uncovering trace amounts of iron atoms in the framework of zeolites. (C) 2000 Academic Press.
Resumo:
Cationic lipids-DNA complexes (lipoplexes) have been used for delivery of nucleic acids into cells in vitro and in vivo. Despite the fact that, over the last decade, significant progress in the understanding of the cellular pathways and mechanisms involved in lipoplexes-mediated gene transfection have been achieved, a convincing relationship between the structure of lipoplexes and their in vivo and in vitro transfection activity is still missing. How does DNA affect the lipid packing and what are the consequences for transfection efficiency is the point we want to address here. We investigated the bilayer organization in cationic liposomes by electron spin resonance (ESR). Phospholipids spin labeled at the 5th and 16th carbon atoms were incorporated into the DNA/diC14-amidine complex. Our data demonstrate that electrostatic interactions involved in the formation of DNA-cationic lipid complex modify the packing of the cationic lipid membrane. DNA rigidifies the amidine fluid bilayer and fluidizes the amidine rigid bilayer just below the gel-fluid transition temperature. These effects were not observed with single nucleotides and are clearly related to the repetitive charged motif present in the DNA chain and not to a charge-charge interaction. These modifications of the initial lipid packing of the cationic lipid may reorient its cellular pathway towards different routes. A better knowledge of the cationic lipid packing before and after interaction with DNA may therefore contribute to the design of lipoplexes capable to reach specific cellular targets. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Electron spin resonance (ESR) studies were carried out to identify the defect centres responsible for the thermoluminescence (TL) and optically stimulated luminescence (OSL) processes in BeO phosphor. Two defect centres were identified in irradiated BeO phosphor by ESR measurements, which were carried out at room temperature and these were assigned to an O(-) ion and Al(2+) centre. The O(-) ion (hole centre) correlates with the main 190 degrees C TL peak. The Al(2+) centre (electron centre), which acts as a recombination centre, also correlates to the 190 degrees C TL peak. A third centre, observed during thermal annealing studies, is assigned to an O(-) ion and is related to the high temperature TL at 317 degrees C. This centre also appears to be responsible for the observed OSL process in BeO phosphor. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)