990 resultados para Electron backscattering diffraction


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ideal starting condition for selective growth experiments is one having a layer of randomly-oriented nuclei adjacent to a matrix with negligible orientational variation but sufficient stored energy to promote growth. In practice, cutting or deformation processes are used in an attempt to approximate these ideal conditions, but the degree to which this is achieved has not been rigorously quantified. In this work, Fe-3wt%Si single crystals were cut or deformed using six different processes. The variation in texture with distance from the cut or deformed surface was measured using electron backscatter diffraction (EBSD) in a field emission gun scanning electron microscope (FEG-SEM) in order to assess the ability of each process to create conditions suitable for selective growth experiments. While grooving with a machine tool produced the best spread of orientations at the cut surface, the suitability of this process is diminished by the presence of a differently-textured deformed layer between the cut surface and the single crystal matrix. Grinding produced a less ideal distribution of orientations at the cut surface, but the presence of these orientations in a very thin layer adjacent to the matrix makes this process preferable for preparing crystals for selective growth experiments, provided the results are corrected for the deviation in the distribution of nuclei orientations from a random distribution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an overview of a series of investigations of the microstructure and texture of cold-rolled IF and LC steel. The investigations made extensive use of orientation mapping using electron backscattered diffraction (EBSD) in a field emission gun scanning electron microscope (FEG-SEM). The effect of grain boundaries on the deformed microstructure was examined by comparing the textures of regions near grain boundaries and in the interiors of grains.  A general weakening of the texture, but a strengthening of the {OOI}<110> component, occurs in the vicinity of grain boundaries. Misorientation angle and axis distributions were used to characterise the fragmentation of grains belonging to different orientation classes. The influence of carbon on the deformed microstructure and nucleation during recrystallization was clarified by examining the microstructures of LC and IF steels during rolling and annealing. The
results of the investigations emphasize the important role of shear banding in determining the fragmentation behaviour of ND-fibre grains and the orientations of viable recrystallization nuclei within the deformed microstructure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since magnesium alloys are the lightest metallic materials, they are very attractive for automotive and aerospace industries. The main problem of these alloys is limited ductility due to a shortage of independent slip systems. In order to improve the formability in these alloys, an understanding of the deformation modes is required. In the present work, different slip systems were investigated in rolled Mg-3Al-IZn by means of in situ tensile tests in the SEM. These permitted electron backscatter diffraction (EBSD) and electron backscatter diffraction imaging (QBSD) to be carried out during the test. The results show that non-basal slip systems are active at room temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A semianalytical Sachs-type equation for the flow stress of magnesium-base alloys is developed using the Schmid law, power law hardening, and a sigmoidal increase in the twinning volume fraction with strain. Average Schmid factors were estimated from electron backscattered diffraction (EBSD) data. With these, the equation provides a reasonable description of the flow curves obtained in compression and tension for samples of Mg-3Al-1Zn cut in different orientations from rolled plate. The model illustrates the general importance of basal slip and twinning in magnesium alloys. The significance of prismatic slip in room temperature tension testing is also highlighted. This is supported with EBSD slip line trace analysis and rationalized in terms of a possible sensitivity of the critical resolved shear stress for prismatic (cross) slip to the stress on the basal plane.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The transformation texture of α/β brass with a diffusional Widmanstätten α growth morphology has been investigated. Electron micrographs and electron backscattered diffraction was used to determine that the orientation relationship between the β phase and the α associated with nucleation at β grain boundaries was (44.3°) left angle bracket1 1 6right-pointing angle bracket. Crystallographic variant selection was observed across those prior β/β grain boundaries, but this has little effect on the transformation texture due to the crystal symmetry. The effect of the crystallographic variant selection on texture is further weakened by nucleation of diffusional transformed α in the grain interior.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High purity Al single crystals of the (011)[011] orientation have been deformed in plane strain compression in a channel die. Deformation was carried out at a strain rate of 0.01 s−1 to true strains of 0.5 and 1.0, and at temperatures of 25, 200 and 300 °C. The as-deformed microstructure has been characterized using electron backscattered diffraction (EBSD) and X-ray diffraction (XRD). No recrystallization was detected after deformation, and the deformation texture analysis showed that the stability of the orientation decreased with increasing temperature, contrary to reports for other orientations.

Annealing was carried out for various times at 300 °C. Nucleation of recrystallization exhibited periodicity, with distinct bands of recrystallized grains forming parallel to the transverse direction. This recrystallized microstructure has been examined using EBSD. A model is proposed to account for the origin of the periodicity of nucleation and the retention of rods or cylinders of unrecrystallized material after significant annealing times.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transformation textures in the two-phase alloy Ti–6Al–4V have been studied. Samples were heated into the fully β phase condition and then slow cooled to allow diffusional transformation to α. This produced a microstructure of grain boundary α encircling colonies of Widmanstätten α. Electron backscattered diffraction (EBSD) texture measurements showed that the α texture was markedly sharper than that calculated on a basis of equal variant probability, indicating that significant variant selection was occurring during diffusional transformation. Investigation of the α variants produced across prior β grain boundaries has shown that the selection of variants during transformation is highly dependant on the crystallography of those boundaries. The effect of this crystallographic variant selection on the transformation texture has been modelled.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magnesium alloys are attractive for automotive and aerospace industries, due to their low density. One problem with these alloys is their limited formability at room temperature. Twinning plays a dominant role in deformation behaviour and it can be expected that an increased understanding of twinning will help improve formability. In the present work, the behaviour of different twinning systems in as-cast Mg-3AI-IZn is investigated using in-situ tensile tests in a scanning electron microscope. Electron backscatter diffraction and back scatter electron imaging were carried out during the tests. The results show both "tension" and "compression" twinning are active at room temperature and that twinning and untwinning occur both during loading and unloading.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work describes a hybrid modeling approach developed for predicting the flow behavior, recrystallization characteristics, and crystallographic texture evolution in a Fe-30 wt pct Ni austenitic model alloy subjected to hot plane strain compression. A series of compression tests were performed at temperatures between 850 °C and 1050 °C and strain rates between 0.1 and 10 s−1. The evolution of grain structure, crystallographic texture, and dislocation substructure was characterized in detail for a deformation temperature of 950 °C and strain rates of 0.1 and 10 s−1, using electron backscatter diffraction and transmission electron microscopy. The hybrid modeling method utilizes a combination of empirical, physically-based, and neuro-fuzzy models. The flow stress is described as a function of the applied variables of strain rate and temperature using an empirical model. The recrystallization behavior is predicted from the measured microstructural state variables of internal dislocation density, subgrain size, and misorientation between subgrains using a physically-based model. The texture evolution is modeled using artificial neural networks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Air-atomized pure aluminium powder with 15 at.% MgB2 was mechanically milled (MMed) by using a vibrational ball mill, and MMed powders were consolidated by spark plasma sintering (SPS) to produce composite materials with high specific strength. Solid-state reactions of MMed powders have been examined by X-ray diffraction (XRD), and mechanical properties of the SPSed materials have been evaluated by hardness measurements and compression tests. Orientation images of microstructures were obtained via the electron backscatter diffraction (EBSD) technique.

The solid-state reactions in the Al–15 at.% MgB2 composite materials occurred between the MMed powders and process control agent (PCA) after heating at 773–873 K for 24 h. The products of the solid-state reaction were a combination of AlB2, Al3BC and spinel MgAl2O4. Mechanical milling (MM) processing time and heating temperatures affect the characteristics of those intermetallic compounds. As the result of the solid-state reactions in MMed powders, a hardness increase was observed in MMed powders after heating at 573–873 K for 24 h. The full density was attained for the SPSed materials from 4 h or 8 h MMed powders in the Al–15 at.% MgB2 composite materials under an applied pressure of 49 MPa at 873 K for 1 h. The microstructure of the SPSed materials fabricated from the MMed powders presented the bimodal aluminium matrix grain structure with the randomly distributions. The Al–15 at.% MgB2SPSed material from powder MMed for 8 h exhibited the highest compressive 0.2% proof strength of 846 MPa at room temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of grain size and deformation temperature on the behavior of wire-drawn a-Ti during compression has been examined. At strains of 0.3, the flow stress exhibited a negative Hall–Petch slope. This is proposed to result from the prevalence of twinning during the compressive deformation. Electron backscattered diffraction revealed that {1012} was the most prolific twin type across all the deformation temperatures and grain sizes examined. Of the twinning modes observed, {1122} twinning was the most sensitive to the grain size and deformation temperature. The range of morphologies exhibited by deformation twins is also described.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of initial grain size on the recrystallization behavior of a type 304 austenitic stainless steel during and following hot deformation was investigated using hot torsion. The refinement of the initial grain size to 8 μm, compared with an initial grain size of 35 μm, had considerable effects on the dynamic recrystallization (DRX) and post-DRX phenomena. For both DRX and post-DRX, microstructural investigations using electron backscattered diffraction confirmed an interesting transition from conventional (discontinuous) to continuous DRX with a decrease in the initial grain size. Also, there were unexpected effects of initial grain size on DRX and post-DRX grain sizes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work combines electron backscatter diffraction, transmission electron microscopy and Schmid analysis to investigate secondary twinning in the magnesium alloy Mg-3AI-1Zn. Inspection of the misorientations between the parent matrix and {1011} - {1012} doubly twinned volumes reveals that there are four possible variants. One of these variants characterized by 38°< 1210 > misorientation with the matrix is favoured much more than the others. This variant involves activation of the secondary twinning systems that are quite inconsistent with the Schmid-type behaviour. For the secondary twin to grow significantly it must take on a shape enforced by the primary twin, however, this is not optimal for strain compatibility. It is argued that the 38° < 1210 > variant occurs most frequently because it provides the closest match between the primary and secondaty twinning planes, thus minimizing the compatibility strain. This conjecture is confirmed by the simulations of twin activity m ellipsoidal grains performed using the visco-plastic self-consistent crystal plasticity model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of physically-based models of microstructural evolution during hot deformation of metallic materials requires knowledge of the grain/subgrain structure and crystallographic texture characteristics over a range of processing conditions. A Fe-30wt%Ni based alloy, retaining a stable austenitic structure at room temperature, was used for modelling the development of austenite microstructure during hot deformation of conventional carbon-manganese steels. A series of plane strain compression tests was carried out at a temperature of 950 °C and strain rates of 10 s-1 and 0.1 s-1 to several strain levels. Evolution of the grain/subgrain structure and crystallographic texture was characterised in detail using quantitative light microscopy and highresolution electron backscatter diffraction. Crystallographic texture characteristics were determined separately for the observed deformed and recrystallised grains. The subgrain geometry and dimensions together with the misorientation vectors across sub-boundaries were quantified in detail across large sample areas and the orientation dependence of these characteristics was determined. Formation mechanisms of the recrystallised grains were established in relation to the deformation microstructure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Shear bands formed during both cold and hot plastic deformation have been linked with several proposed mechanisms for the formation of ultrafine grains. The aim of the present work was to undertake a detailed investigation of the microstructural and crystallographic characteristics of the shear bands formed during hot deformation of a 22Cr-19Ni-3Mo (mass%) austenitic stainless steel and a Fe-30 mass%Ni based austenitic model alloy. These alloys were subjected to deformation in torsion and plane strain compression (PSC), respectively, at temperatures of 900°C and 950°C and strain rates of 0.7s-1 and 10s-1, respectively. Transmission electron microscopy and electron backscatter diffraction in conjunction with scanning electron microscopy were employed in the investigation. It has been observed that shear bands already started to form at moderate strains in a matrix of pre-existing microbands and were composed of fine, slightly elongated subgrains (fragments). These bands propagated along a similar macroscopic path and the subgrains, present within their substructure, were rotated relative to the surrounding matrix about axes approximately parallel to the sample radial and transverse directions for deformation in torsion and PSC, respectively. The subgrain boundaries were largely observed to be non-crystallographic, suggesting that the subgrains generally formed via multiple slip processes. Shear bands appeared to form through a co-operative nucleation of originally isolated subgrains that gradually interconnected with the others to form long, thin bands that subsequently thickened via the formation of new subgrains. The observed small dimensions of the subgrains present within shear bands and their large misorientations clearly indicate that these subgrains can serve as potent nucleation sites for the formation of ultrafine grain structures during both subsequent recrystallisation, as observed during the present PSC experiments, and phase transformation.