979 resultados para Electrolyte Solution


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrochemical behavior of the hydrolysis products of oxadiazon was studied by cyclic and square-wave voltammetry using a glassy carbon electrode. Maximum currents were obtained at pH 12.8 in an aqueous electrolyte solution containing 30% ethanol and the current did not decrease with time showing that there was little adsorption of the reaction products on the electrode surface. The hydrolysis products of oxadiazon were identi®ed, after isolation and puri®cation, as 1-trimethylacetyl-2-(2,4-dichloro-5-isopropoxyphenyl)-2-ethoxycarbonylhydrazine (Oxa1) and 1-trimethylacetyl-2-(2,4-dichloro-5-isopropoxyphenyl) hydrazine (Oxa2) with redox potentials 0.6Vand 70.1V (vs. Ag=AgCl), respectively. Based on the electrochemical behavior of 1-trimethylacetyl-2-(2,4-dichloro-5-isopropoxyphenyl) hydrazine (Oxa2) a simple electroanalytical procedure was developed for the determination of oxadiazon in commercial products used in the treatment of rice crops in Portugal that contain oxadiazon as the active ingredient. The detection limit was 161074 M, the mean content and relative standard deviation obtained for seven samples of two different commercial products by the electrochemical method were 28.4 0.8% (Ronstar) and 1.9 0.2% (Ronstar GR), and the recoveries were 100.3 5.4% and 101.1 5.3 %, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reduction of luvastatin (FLV) at a hanging mercury-drop electrode (HMDE) was studied by square-wave adsorptive-stripping voltammetry (SWAdSV). FLV can be accumulated and reduced at the electrode, with a maximum peak current intensity at a potential of approximately 1.26V vs. AgCl=Ag, in an aqueous electrolyte solution of pH 5.25. The method shows linearity between peak current intensity and FLV concentration between 1.0 10 8 and 2.7 10 6 mol L 1. Limits of detection (LOD) and quantification (LOQ) were found to be 9.9 10 9 mol L 1 and 3.3 10 8 mol L 1, respectively. Furthermore, FLV oxidation at a glassy carbon electrode surface was used for its hydrodynamic monitoring by amperometric detection in a flow-injection system. The amperometric signal was linear with FLV concentration over the range 1.0 10 6 to 1.0 10 5 mol L 1, with an LOD of 2.4 10 7 mol L 1 and an LOQ of 8.0 10 7 mol L 1. A sample rate of 50 injections per hour was achieved. Both methods were validated and showed to be precise and accurate, being satisfactorily applied to the determination of FLV in a commercial pharmaceutical.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrochemical behavior of citalopram was studied by square-wave and square-wave adsorptive-stripping voltammetry (SWAdSV). Citalopram can be reduced and accumulated at a mercury drop electrode, with a maximum peak current intensity being obtained at a potential of approximately -1.25V vs. AgCl/Ag, in an aqueous electrolyte solution of pH 12. A SWAdSV method has been developed for the determination of citalopram in pharmaceutical preparations. The method shows a linear range between 1.0x10-7 and 2.0x10-6 mol L-1 with a limit of detection of 5x10-8 mol L-1 for an accumulation time of 30 s. The precision of the method was evaluated by assessing the repeatability and intermediate precision, achieving good relative standard deviations in all cases (≤2.3%). The proposed method was applied to the determination of citalopram in five pharmaceutical products and the results obtained are in good agreement with the labeled values.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fluvoxamine (FVX) can be reduced at a mercury- drop electrode, with a maximum peak current intensity being obtained at a potential of -0.7 V vs. Ag/ AgCl, in an aqueous electrolyte solution of pH 2. The compound was determined in a pharmaceutical product and in spiked human serum by square-wave adsorptivestripping voltammetry (SWAdSV) after accumulation at the electrode surface, under batch conditions. Because the presence of dissolved oxygen did not interfere significantly with the analysis, it was also possible to determine FVX in the pharmaceutical product by use of a flow-injection analysis (FIA) system with SWAdSV detection. The methods developed were validated and successfully applied to the quantification of FVX in a pharmaceutical product. Recoveries between 76 and 89% were obtained in serum analysis. The FIA– SWAdSV method enabled analysis of up to 120 samples per hour at reduced cost, implying the possibility of competing with the chromatographic methods usually used for this analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrochemical behaviour of the herbicide Asulam was studied by cyclic and square wave voltammetry. Asulam may be irreversibly oxidised at a glassy carbon electrode. Maximum currents were obtained at pH=1.9 in aqueous electrolyte solution. Based on the electrochemical behaviour of Asulam, two analytical methodologies were developed for its determination in water samples, using square wave voltammetry (SWV) and flow injection analysis (FIA) coupled with an amperometric detector. Limits of detection of 7.1x10-6 mol L-1 and 1.2x10-8 mol L-1 for SWV and FIA respectively, were achieved. Repeatability was calculated by assessing the relative standard deviation (%) for 10 consecutive determinations of one sample. The found values were 2.1% for SWV and 5.0% for FIA. Validation of the results provided by SWV and FIA methodologies was performed by comparison with results from an HPLC-DAD technique. Good relative deviations were found (<5%). Recovery trials were performed to assess the accuracy of the results and the obtained values were between 84% and 107% for both methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrochemical and spectroelectrochemical techniques were employed to study in detail the formation and so far unreported spectroscopic properties of soluble electroactive molecular chains with nonbridged metal-metal backbones, namely, [{Ru-0(CO)(PrCN)(bpy)}(m)](n) (m = 0, -1) and [{Ru-0(CO)(bpy)Cl}(m)](n) (m = -1, -2; bpy = 2,2'-bipyridine). The precursors cis-(Cl)-[Ru-II(CO)(MeCN)(bpy)Cl-2] (in PrCN) and mer-[Ru-II(CO)(bpy)Cl-3](-) (in tetrahydrofuran (THF) and PrCN) undergo one-electron reductions to reactive radicals [Ru-II(CO)(MeCN)(bpy(center dot-))Cl-2](-) and [Ru-II(CO)(bpy(center dot-))Cl-3](2-), respectively. Both [bpy(center dot-)]-containing species readily electropolymerize on concomitant dissociation of two chloride ligands and consumption of a second electron. Along this path, mer-to-fac isomerization of the bpy-reduced trichlorido complex (supported by density functional theory calculations) and a concentration-dependent oligomerization process contribute to the complex reactivity pattern. In situ spectroelectrochemistry (IR, UV/vis a has revealed that the charged polymer [{Ru-0(CO)(bpy)Cl}(-)](n) is stable in THF, but in PrCN it converts readily to [Ru-0(CO)(PrCN)(bpy)](n). An excess of chloride ions retards this substitution at low temperatures. Both polymetallic chains are completely soluble in the electrolyte solution and can be reduced reversibly to the corresponding [bpy(center dot-)]-containing species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The synthesis of 2D hexagonal mesoporous platinum films with biaxial, in-plane pore alignment is demonstrated by electrodeposition through an aligned lyotropic liquid crystal templating phase. Shear force is used to align a hexagonal lyotropic liquid crystalline templating phase of an inexpensive and a commercially available surfactant, C16EO10, at the surface of an electrode. Electrodeposition and subsequent characterisation of the films produced shows that the orientation and alignment of the phase is transferred to the deposited material. Transmission electron microscopy confirms the expected nanostructure of the films, whilst transmission and grazing incidence small angle X-ray scattering analysis confirms biaxial, in plane alignment of the pore structure. In addition further electrochemical studies in dilute sulfuric acid and methanol show that the pores are accessible to electrolyte solution as indicated by a large current flow; the modified electrode therefore has a high surface area, that catalyses methanol oxidation, and the pores have a very large aspect ratio (of theoretical maximum 2 × 105). Films with such aligned mesoporosity will advance the field of nanotechnology where the control of pore structure is paramount. The method reported is sufficiently generic to be used to control the structure and order of many materials, thus increasing the potential for the development of a wide range of novel electronic and optical devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

STM and impedance results of the self-assembled monolayer (SAM) formed with thionicotinamide (TNA) on gold indicate the presence of defects that increase with the immersion time of the electrode in the TNA solution affecting the SAM electroactivity toward the electron transfer reaction of the cytochrome e metalloprotein and [Fe(CN)(6)](4-) and [Ru(NH(3))(6)](3+) complexes. It was observed that this electroactivity was also affected by the pH of the electrolyte solution. SERS and STM data indicate sulfur coordination to the surface with contribution of the NH(2) group. From the dependence of the TNA surface coverage on the temperature and concentration in solution, thermodynamic parameters of adsorption were determined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes the determination of ciclopirox olamine in pharmaceutical formulations using capillary electrophoresis with capacitively coupled contactless conductivity detection. In an alkaline medium, ciclopirox olamine is converted into an anionic species and its detection is possible in capillary electrophoresis with capacitively coupled contactless conductivity detection without an electroosmotic flow modifier, because it is a low-mobility species. A linear working range from 2.64 to 264 mu g/mL in sodium hydroxide electrolyte as well as low detection limit (0.39 mu g/mL) and a good repeatability (RSD = 3.4% for 264 mu g/mL ciclopirox solution (n = 10)) were achieved. It was also possible to determine olamine in its cationic form when acetic acid was used as the electrolyte solution. The results obtained include a linear range from 26.4 to 184.8 mu g/mL and a detection limit of 2.6 mu g/mL olamine. The proposed methods were applied to the analysis of commercial pharmaceutical products and the results were compared with the values indicated by the manufacturer as well as those obtained using a titrimetric method recommended by American Pharmacopoeia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrochemical preparation described herein involved the electrocatalytic oxidation of sulfite on a platinum electrode modified with nanostructured copper salen (salen=N,N'-ethylenebis(salicylideneiminato)) polymer films. The complex was prepared and electropolymerized at a platinum electrode in a 0.1 mol L-1 solution of tetrabutylammonium perchlorate in acetonitrile by cyclic voltammetry between 0 and 1.4V vs. SCE. After cycling the modified electrode in a 0.50 mol L-1 KCI solution, the estimated surface concentration was found to be equal to 2.2 x 10(-9) Mol cm(-2). This is a typical behavior of an electrode surface immobilized with a redox couple that can usually be considered as a reversible single-electron reduction/oxidation of the copper(II)/copper(III) couple. The potential peaks of the modified electrode in the electrolyte solution (aqueous) containing the different anions increase with the decrease of the ionic radius, demonstrating that the counter-ions influence the voltammetric behavior of the sensor. The potential peak was found to be linearly dependent upon the ratio [ionic charge]/[ionic radius]. The oxidation of the sulfite anion was performed at the platinum electrode at +0.9V vs. SCE. However, a significant decrease in the overpotential (+0.45V) was obtained while using the sensor, which minimized the effect of oxidizable interferences. A plot of the anodic current vs. the sulfite concentration for chronoamperometry (potential fixed = +0.45V) at the sensor was linear in the 4.0 x 10(-6) to 6.9 x 10(-5) mol L-1 concentration range and the concentration limit was 1.2 x 10(-6) mol L-1. The reaction order with respect to sulfite was determined by the slope of the logarithm of the current vs. the logarithm of the sulfite concentration. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Titanium and their alloys have been used for biomedical applications due their excellent mechanical properties, corrosion resistance and biocompatibility. However, they are considered bioinerts materials because when they are inserted into the human body they are cannot form a chemical bond with bone. In several studies, the authors have attempted to modify their characteristic with treatments that changes the material surface. The purpose of this work was to evaluate obtaining of nanoapatite after growing of the nanotubes in surface of Ti-7.5Mo alloy. Alloy was obtained from c.p. titanium and molibdenium by using an arc-melting furnace. Ingots were submitted to heat treatment and they were cold worked by swaging. Nanotubes were processed using anodic oxidation of alloy in electrolyte solution. Surfaces were investigated using scanning electron microscope (SEM), FEG-SEM and thin-film x-ray diffraction. The results indicate that nanoapatite coating could form on surface of Ti-7.5Mo experimental alloy after nanotubes growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ceftazidime is hydrolysed only slowly at pH 10 at room temperature. This is indicated by a small cathodic stripping voltammetric peak obtained at pH 10 at a hanging mercury drop electrode at about -0.6 V which corresponds to the reduction of the hydrolysis product. This peak is enhanced more than tenfold by the addition of poly-L-lysine (PLL) to the electrolyte solution. The optimum accumulation potential is between 0 and -0.1 V: the size of the peak decreases steadily, however, as the accumulation potential is moved to more negative potentials and is about one-sixth the size for accumulation at -0.4 V. Existing knowledge of the organic chemistry of cephalosporins indicates that the accumulation must involve an aminolysis reaction of the unprotonated PLL with the beta-lactam ring of the ceftazidime. The limit of detection (3 sigma) in standard solutions was calculated to be 1 x 10(-10) mol l(-1). The detection limit in buffer solution containing 1% of urine was calculated to be 5 x 10(-9) mol l(-1), i.e. 5 x 10(-6) mol l(-1) in the urine. (C) 1999 Elsevier B.V. B.V. AU rights reserved.