967 resultados para Electroencephalogram (EEG)
Resumo:
Alzheimer’s disease is the most common cause of dementia which causes a progressive and irreversible impairment of several cognitive functions. The aging population has been increasing significantly in recent decades and this disease affects mainly the elderly. Its diagnostic accuracy is relatively low and there is not a biomarker able to detect AD without invasive tests. Despite the progress in better understanding the disease there remains no prospect of cure at least in the near future. The electroencephalogram (EEG) test is a widely available technology in clinical settings. It may help diagnosis of brain disorders, once it can be used in patients who have cognitive impairment involving a general decrease in overall brain function or in patients with a located deficit. This study is a new approach to improve the scalp localization and the detection of brain anomalies (EEG temporal events) sources associated with AD by using the EEG.
Resumo:
Alzheimer's disease (AD) represents one ofthe greatest public health challenges worldwide nowadays, because it affects millions of people ali o ver the world and it is expected that the disease will increase considerably in the near future. This study is the first application attempt of cepstral analysis on Electroencephalogram (EEG) signals to find new parameters in arder to achieve a better differentiation belween EEGs of AD patients and Control subjects. The results show that the methodology that uses a combined Wavelet (WT) Biorthogonal (Bior) 3.5 and cepstrum analysis was able to describe the EEG dynamics with a higher discriminative power than the other WTs/spectmm methodologies m previous studies. The most important significance figures were found in cepstral distances between cepstrums oftheta and alpha bands (p=0. 00006<0. 05).
Resumo:
based on the report for the Doctoral Conference of the PhD programme in Technology Assessment, held at FCT-UNL Campus, Monte de Caparica, July 2013. The PhD thesis has the supervision of Dr. Salomé Almeida (Central Hospital of Lisbon), and co-supervision of Prof. Manuel Ortigueira (FCT-UNL).
Resumo:
There are controversial reports about the effect of aging on movement preparation, and it is unclear to which extent cognitive and/or motor related cerebral processes may be affected. This study examines the age effects on electro-cortical oscillatory patterns during various motor programming tasks, in order to assess potential differences according to the mode of action selection. Twenty elderly (EP, 60-84 years) and 20 young (YP, 20-29 years) participants with normal cognition underwent 3 pre-cued response tasks (S1-S2 paradigm). S1 carried either complete information on response side (Full; stimulus-driven motor preparation), no information (None; general motor alertness), or required free response side selection (Free; internally-driven motor preparation). Electroencephalogram (EEG) was recorded using 64 surface electrodes. Alpha (8-12 Hz) desynchronization (ERD)/synchronization (ERS) and motor-related amplitude asymmetries (MRAA) were analyzed during the S1-S2 interval. Reaction times (RTs) to S2 were slower in EP than YP, and in None than in the other 2 tasks. There was an Age x Task interaction due to increased RTs in Free compared to Full in EP only. Central bilateral and midline activation (alpha ERD) was smaller in EP than YP in None. In Full just before S2, readiness to move was reflected by posterior midline inhibition (alpha ERS) in both groups. In Free, such inhibition was present only in YP. Moreover, MRAA showed motor activity lateralization in both groups in Full, but only in YP in Free. The results indicate reduced recruitment of motor regions for motor alertness in the elderly. They further show less efficient cerebral processes subtending free selection of movement in elders, suggesting reduced capacity for internally-driven action with age.
Resumo:
Wake-promoting drugs are widely used to treat excessive daytime sleepiness. The neuronal pathways involved in wake promotion are multiple and often not well characterized. We tested d-amphetamine, modafinil, and YKP10A, a novel wake-promoting compound, in three inbred strains of mice. The wake duration induced by YKP10A and d-amphetamine depended similarly on genotype, whereas opposite strain differences were observed after modafinil. Electroencephalogram (EEG) analysis during drug-induced wakefulness revealed a transient approximately 2 Hz slowing of theta oscillations and an increase in beta-2 (20-35 Hz) activity only after YKP10A. Gamma activity (35-60 Hz) was induced by all drugs in a drug- and genotype-dependent manner. Brain transcriptome and clustering analyses indicated that the three drugs have both common and specific molecular signatures. The correlation between specific EEG and gene-expression signatures suggests that the neuronal pathways activated to stay awake vary among drugs and genetic background.
Resumo:
Although it has long been known that genetic factors play a major role in shaping the electroencephalogram (EEG), progress on identifying the underlying genes has, until recently, been limited. Using quantitative trait loci (QTL) analyses several genomic loci affecting the sleep EEG could be mapped in the mouse. For three of these QTLs the responsible genes were identified leading to the implication of novel signaling pathways affecting EEG traits. Moreover, the insight that in the mouse the sleep-wake dependent dynamics in the expression of EEG slow waves during sleep is under strong genetic control has paved the way for candidate gene studies in humans investigating the contribution of specific polymorphism to the trait-like inter-individual differences in the susceptibility to sleep loss. Candidate gene studies in the mouse were also instrumental in establishing an alternative, noncircadian function for clock genes in the homeostatic regulation of sleep and modulating rhythmic EEG activity of thalamocortical origin. Future efforts should combine system genetics approaches in the mouse and genome-wide association studies in humans to facilitate uncovering the molecular pathways that shape brain activity.
Resumo:
Delta oscillations, characteristic of the electroencephalogram (EEG) of slow wave sleep, estimate sleep depth and need and are thought to be closely linked to the recovery function of sleep. The cellular mechanisms underlying the generation of delta waves at the cortical and thalamic levels are well documented, but the molecular regulatory mechanisms remain elusive. Here we demonstrate in the mouse that the gene encoding the retinoic acid receptor beta determines the contribution of delta oscillations to the sleep EEG. Thus, retinoic acid signaling, which is involved in the patterning of the brain and dopaminergic pathways, regulates cortical synchrony in the adult.
Resumo:
The electroencephalogram (EEG), invented by the German psychiatrist Hans Berger in 1924, reached the neurophysiological laboratories and several clinical contexts in the mid-30s. In Switzerland, some skeptical physiologists and enthusiastic psychiatrists paved the way for its integration, but it was only after the Second World War that an emerging field of epileptology became part of a process of technological and epistemological innovation which raised great expectations and produced a large body of research at the crossroads of physiology, neurology and psychiatry. An informal network was created, characterized by clinical, scientific and local institutional cultures. The EEG also made it possible to detect some clinical entities, not however without transforming them, as in the case of epilepsy. Some attempts to probe psychiatric diseases and subjects with the EEG are described as negotiated relationships between clinical observations, subjective manifestations or symptoms and inscriptions of a spontaneous or elicited electrical brain activity. These attempts shape a clinical and experimental cerebral subject, which is analyzed in this article from the point of view of its technical aspects and the concrete procedures on which it depends.
Resumo:
Selection of action may rely on external guidance or be motivated internally, engaging partially distinct cerebral networks. With age, there is an increased allocation of sensorimotor processing resources, accompanied by a reduced differentiation between the two networks of action selection. The present study examines the age effects on the motor-related oscillatory patterns related to the preparation of externally and internally guided movements. Thirty-two older and 30 younger adults underwent three delayed motor tasks with S1 as preparatory and S2 as imperative cue: Full, laterality instructed by S1 (external guidance); Free, laterality freely selected (internal guidance); None, laterality instructed by S2 (no preparation). Electroencephalogram (EEG) was recorded using 64 surface electrodes. Motor-Related Amplitude Asymmetries (MRAA), indexing the lateralization of oscillatory activities, were analyzed within the S1-S2 interval in the mu (9-12 Hz) and low beta (15-20 Hz) motor-related frequency bands. Reaction times to S2 were slower in older than younger subjects, and slower in the Free than in the Full condition in older subjects only. In the Full condition, there were significant mu MRAA in both age groups, and significant low beta MRAA only in older adults. The Free condition was associated with large mu MRAA in younger adults and limited low beta MRAA in older adults. In younger subjects, the lateralization of mu activity in both Full and Free conditions indicated effective external and internal motor preparation. In older subjects, external motor preparation was associated with lateralization of low beta in addition with mu activity, compatible with an increase of motor-related resources. In contrast, absence of mu and limited low beta lateralization in internal motor preparation was concomitant with reaction time slowing and suggested less efficient cerebral processes subtending free movement selection in older adults, indicating reduced capacity for internally driven action with age.
Resumo:
La tècnica de l’electroencefalograma (EEG) és una de les tècniques més utilitzades per estudiar el cervell. En aquesta tècnica s’enregistren els senyals elèctrics que es produeixen en el còrtex humà a través d’elèctrodes col•locats al cap. Aquesta tècnica, però, presenta algunes limitacions a l’hora de realitzar els enregistraments, la principal limitació es coneix com a artefactes, que són senyals indesitjats que es mesclen amb els senyals EEG. L’objectiu d’aquest treball de final de màster és presentar tres nous mètodes de neteja d’artefactes que poden ser aplicats en EEG. Aquests estan basats en l’aplicació de la Multivariate Empirical Mode Decomposition, que és una nova tècnica utilitzada per al processament de senyal. Els mètodes de neteja proposats s’apliquen a dades EEG simulades que contenen artefactes (pestanyeigs), i un cop s’han aplicat els procediments de neteja es comparen amb dades EEG que no tenen pestanyeigs, per comprovar quina millora presenten. Posteriorment, dos dels tres mètodes de neteja proposats s’apliquen sobre dades EEG reals. Les conclusions que s’han extret del treball són que dos dels nous procediments de neteja proposats es poden utilitzar per realitzar el preprocessament de dades reals per eliminar pestanyeigs.
Resumo:
The Na(+)-independent alanine-serine-cysteine transporter 1 (Asc-1) is exclusively expressed in neuronal structures throughout the central nervous system (CNS). Asc-1 transports small neutral amino acids with high affinity especially for D-serine and glycine (K(i): 8-12 microM), two endogenous glutamate co-agonists that activate N-methyl-D-aspartate (NMDA) receptors through interacting with the strychnine-insensitive glycine binding-site. By regulating D-serine (and possibly glycine) levels in the synaptic cleft, Asc-1 may play an important role in controlling neuronal excitability. We generated asc-1 gene knockout (asc-1(-/-)) mice to test this hypothesis. Behavioral phenotyping combined with electroencephalogram (EEG) recordings revealed that asc-1(-/-) mice developed tremors, ataxia, and seizures that resulted in early postnatal death. Both tremors and seizures were reduced by the NMDA receptor antagonist MK-801. Extracellular recordings from asc-1(-/-) brain slices indicated that the spontaneous seizure activity did not originate in the hippocampus, although, in this region, a relative increase in evoked synaptic responses was observed under nominal Mg(2+)-free conditions. Taken together with the known neurochemistry and neuronal distribution of the Asc-1 transporter, these results indicate that the mechanism underlying the behavioral hyperexcitability in mutant mice is likely due to overactivation of NMDA receptors, presumably resulting from elevated extracellular D-serine. Our study provides the first evidence to support the notion that Asc-1 transporter plays a critical role in regulating neuronal excitability, and indicate that the transporter is vital for normal CNS function and essential to postnatal survival of mice.
Resumo:
OBJECTIVES: To analyze the prevalence of stimulus-induced rhythmic, periodic or ictal discharges (SIRPIDs) in patients with coma after cardiac arrest (CA) and therapeutic hypothermia (TH) and to examine their potential association with outcome. METHODS: We studied our prospective cohort of adult survivors of CA treated with TH, assessing SIRPIDs occurrence and their association with 3-month outcome. Only univariated analyses were performed. RESULTS: 105 patients with coma after CA who underwent electroencephalogram (EEG) during TH and normothermia (NT) were studied. Fifty-nine patients (56%) survived, and 48 (46%) had good neurological recovery. The prevalence of SIRPIDs was 13.3% (14/105 patients), of whom 6 occurred during TH (all died), and 8 in NT (3 survived, 1 with good neurological outcome); none had SIRPIDs at both time-points. SIRPIDs were associated with discontinuous or non-reactive EEG background and were a robustly related to poor neurological outcome (p<0.001). CONCLUSION: This small series provides preliminary univariate evidence that in patients with coma after CA, SIRPIDs are associated with poor outcome, particularly when occurring during in therapeutic hypothermia. However, survival with good neurological recovery may be observed when SIRPIDs arise in the post-rewarming normothermic phase. SIGNIFICANCE: This study provides clinicians with new information regarding the SIRPIDs prognostic role in patients with coma after cardiac arrest.
Resumo:
In this paper, we present a comprehensive study of different Independent Component Analysis (ICA) algorithms for the calculation of coherency and sharpness of electroencephalogram (EEG) signals, in order to investigate the possibility of early detection of Alzheimer’s disease (AD). We found that ICA algorithms can help in the artifact rejection and noise reduction, improving the discriminative property of features in high frequency bands (specially in high alpha and beta ranges). In addition to different ICA algorithms, the optimum number of selected components is investigated, in order to help decision processes for future works.
Resumo:
Many effects of nitric oxide (NO) are mediated by the activation of guanylyl cyclases and subsequent production of the second messenger cyclic guanosine-3',5'-monophosphate (cGMP). cGMP activates cGMP-dependent protein kinases (PRKGs), which can therefore be considered downstream effectors of NO signaling. Since NO is thought to be involved in the regulation of both sleep and circadian rhythms, we analyzed these two processes in mice deficient for cGMP-dependent protein kinase type I (PRKG1) in the brain. Prkg1 mutant mice showed a strikingly altered distribution of sleep and wakefulness over the 24 hours of a day as well as reductions in rapid-eye-movement sleep (REMS) duration and in non-REM sleep (NREMS) consolidation, and their ability to sustain waking episodes was compromised. Furthermore, they displayed a drastic decrease in electroencephalogram (EEG) power in the delta frequency range (1-4 Hz) under baseline conditions, which could be normalized after sleep deprivation. In line with the re-distribution of sleep and wakefulness, the analysis of wheel-running and drinking activity revealed more rest bouts during the activity phase and a higher percentage of daytime activity in mutant animals. No changes were observed in internal period length and phase-shifting properties of the circadian clock while chi-squared periodogram amplitude was significantly reduced, hinting at a less robust oscillator. These results indicate that PRKG1 might be involved in the stabilization and output strength of the circadian oscillator in mice. Moreover, PRKG1 deficiency results in an aberrant pattern, and consequently a reduced quality, of sleep and wakefulness, possibly due to a decreased wake-promoting output of the circadian system impinging upon sleep.
Resumo:
Résumé Contexte: Bon nombre d'études épidémiologiques concernant les premières crises comitiales ont été effectuées principalement sur des populations générales. Cependant, les patients admis dans un hôpital peuvent présenter des éléments cliniques différents. Nous avons donc mené une étude prospective auprès de sujets dans une population hospitalière ayant subi une première crise d'épilepsie, afin d'étudier leur pronostic et le rôle des examens complémentaires (examen neurologique, imagerie cérébrale, examens sanguins, EEG) dans le choix de l'administration d'une médication antiépileptique. Méthodes : Sur une période d'une année, nous avons suivi 177 patients adultes, admis consécutivement, ayant présenté une crise d'épilepsie dont l'évaluation aiguë a été effectuée dans notre hôpital. Pendant 6 mois, nous avons pratiqué pour chaque patient un suivi du traitement antiépileptique, des récidives de crises et d'un éventuel décès. Résultats : L'examen neurologique était anormal dans 72.3% des cas, l'imagerie cérébrale dans 54.8% et les examens sanguins dans 57.1%. L'EEG a montré des éléments épileptiformes dans 33.9% des cas. L'étiologie la plus fréquemment représentée était constituée par des intoxications. Un traitement antiépileptique a été prescrit chez 51% des patients. 31.6% des sujets suivis à six mois ont subi une récidive ; la mortalité s'est élevée à 17.8%. Statistiquement, l'imagerie cérébrale, l'EEG et l'examen neurologique étaient des facteurs prédictifs indépendants pour l'administration d'antiépileptiques, et l'imagerie cérébrale le seul facteur associé au pronostic. Conclusions : Les patients évalués en aigu dans un hôpital pour une première crise comitiale présentent un profil médical sous-jacent, qui explique probablement leur mauvais pronostic. L'imagerie cérébrale s'est avérée être le test paraclinique le plus important dans la prévention du traitement et du pronostic. Mots-clés : première crise d'épilepsie, étiologie, pronostic, récidive, médication antiépileptique, population hospitalière Summary Background: Epidemiological studies focusing on first-ever seizures have been carried out mainly on community based populations. However, since hospital populations may display varying clinical features, we prospectively analysed patients with first-ever seizure in a hospital based community to evaluate prognosis and the role of complementary investigations in the decision to administer antiepileptic drugs (AED). Methods: Over one year, we recruited 177 consecutive adult patients with a first seizure acutely evaluated in our hospital. During six months' follow-up data relating to AED treatment, recurrence of seizures and death were collected for each patient. Results:. Neurological examination was abnormal in 72.3%, neuroimaging in 54.8% and biochemical tests in 57.1%. Electroencephalogram (EEG) showed epileptiform features in 33.9%. Toxicity represented the most common aetiology. AED was prescribed in 51% of patients. Seizure recurrence at six months involved 31.6% of patients completing the follow-up; mortality was 17.8%. Statistical analysis showed that brain CT, EEG and neurological examination are independent predictive factors for AED administration, but only CT scan is associated with outcome. Conclusions: Patients evaluated acutely for first- ever seizure in a hospital setting have severe underlying clinical conditions apparently related to their relatively poor prognosis. Neuroimaging represents the most important paraclinical test in predicting both treatment administration and outcome.