889 resultados para Electrochemically-reduced graphene oxide
Resumo:
Bioelectronic interfaces have significantly advanced in recent years, offering potential treatments for vision impairments, spinal cord injuries, and neurodegenerative diseases. However, the classical neurocentric vision drives the technological development toward neurons. Emerging evidence highlights the critical role of glial cells in the nervous system. Among them, astrocytes significantly influence neuronal networks throughout life and are implicated in several neuropathological states. Although they are incapable to fire action potentials, astrocytes communicate through diverse calcium (Ca2+) signalling pathways, crucial for cognitive functions and brain blood flow regulation. Current bioelectronic devices are primarily designed to interface neurons and are unsuitable for studying astrocytes. Graphene, with its unique electrical, mechanical and biocompatibility properties, has emerged as a promising neural interface material. However, its use as electrode interface to modulate astrocyte functionality remains unexplored. The aim of this PhD work was to exploit Graphene-oxide (GO) and reduced GO (rGO)-coated electrodes to control Ca2+ signalling in astrocytes by electrical stimulation. We discovered that distinct Ca2+dynamics in astrocytes can be evoked, in vitro and in brain slices, depending on the conductive/insulating properties of rGO/GO electrodes. Stimulation by rGO electrodes induces intracellular Ca2+ response with sharp peaks of oscillations (“P-type”), exclusively due to Ca2+ release from intracellular stores. Conversely, astrocytes stimulated by GO electrodes show slower and sustained Ca2+ response (“S-type”), largely mediated by external Ca2+ influx through specific ion channels. Astrocytes respond faster than neurons and activate distinct G-Protein Coupled Receptor intracellular signalling pathways. We propose a resistive/insulating model, hypothesizing that the different conductivity of the substrate influences the electric field at the cell/electrolyte or cell/material interfaces, favouring, respectively, the Ca2+ release from intracellular stores or the extracellular Ca2+ influx. This research provides a simple tool to selectively control distinct Ca2+ signals in brain astrocytes in neuroscience and bioelectronic medicine.
Resumo:
Graphene and carbon nanotube nanocomposite (GCN) was synthesised and applied in gene transfection of pIRES plasmid conjugated with green fluorescent protein (GFP) in NIH-3T3 and NG97 cell lines. The tips of the multi-walled carbon nanotubes (MWCNTs) were exfoliated by oxygen plasma etching, which is also known to attach oxygen content groups on the MWCNT surfaces, changing their hydrophobicity. The nanocomposite was characterised by high resolution scanning electron microscopy; energy-dispersive X-ray, Fourier transform infrared and Raman spectroscopies, as well as zeta potential and particle size analyses using dynamic light scattering. BET adsorption isotherms showed the GCN to have an effective surface area of 38.5m(2)/g. The GCN and pIRES plasmid conjugated with the GFP gene, forming π-stacking when dispersed in water by magnetic stirring, resulting in a helical wrap. The measured zeta potential confirmed that the plasmid was connected to the nanocomposite. The NIH-3T3 and NG97 cell lines could phagocytize this wrap. The gene transfection was characterised by fluorescent protein produced in the cells and pictured by fluorescent microscopy. Before application, we studied GCN cell viability in NIH-3T3 and NG97 line cells using both MTT and Neutral Red uptake assays. Our results suggest that GCN has moderate stability behaviour as colloid solution and has great potential as a gene carrier agent in non-viral based therapy, with low cytotoxicity and good transfection efficiency.
Resumo:
The identification of genetic markers associated with chronic kidney disease (CKD) may help to predict its development. Because reduced nitric oxide (NO) bioavailability and endothelial dysfunction are involved in CKD, genetic polymorphisms in the gene encoding the enzyme involved in NO synthesis (endothelial NO synthase [eNos]) may affect the susceptibility to CKD and the development of end-stage renal disease (ESRD). We compared genotype and haplotype distributions of three relevant eNOS polymorphisms (T(-786) C in the promoter region, Glu298Asp in exon 7, and 4b/4a in intron 4) in 110 healthy control subjects and 127 ESRD patients. Genotypes for the T(-786) C and Glu298Asp polymorphisms were determined by TaqMan (R) Allele Discrimination assay and real-time polymerase chain reaction. Genotypes for the intron 4 polymorphism were determined by polymerase chain reaction and fragment separation by electrophoresis. The software program PHASE 2.1 was used to estimate the haplotypes frequencies. We considered significant a probability value of p < 0.05/number of haplotypes (p < 0.05/8 = 0.0063). We found no significant differences between groups with respect to age, ethnicity, and gender. CKD patients had higher blood pressure, total cholesterol, and creatinine levels than healthy control subjects (all p < 0.05). Genotype and allele distributions for the three eNOS polymorphisms were similar in both groups (p > 0.05). We found no significant differences in haplotype distribution between groups (p > 0.05). The lack of significant associations between eNOS polymorphisms and ESRD suggests that eNOS polymorphisms may not be relevant to the genetic component of CKD that leads to ESRD.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Biomateriais, Reabilitação e Biomecânica)
Resumo:
Graphene and graphenic derivatives have rapidly emerged as an extremely promising system for electronic, optical, thermal, and electromechanical applications. Several approaches have been developed to produce these materials (i.e. scotch tape, CVD, chemical and solvent exfoliation). In this work we report a chemical approach to produce graphene by reducing graphene oxide (GO) via thermal or electrical methods. A morphological and electrical characterization of these systems has been performed using different techniques such as SPM, SEM, TEM, Raman and XPS. Moreover, we studied the interaction between graphene derivates and organic molecules focusing on the following aspects: - improvement of optical contrast of graphene on different substrates for rapid monolayer identification1 - supramolecular interaction with organic molecules (i.e. thiophene, pyrene etc.)4 - covalent functionalization with optically active molecules2 - preparation and characterization of organic/graphene Field Effect Transistors3-5 Graphene chemistry can potentially allow seamless integration of graphene technology in organic electronics devices to improve device performance and develop new applications for graphene-based materials. [1] E. Treossi, M. Melucci, A. Liscio, M. Gazzano, P. Samorì, and V. Palermo, J. Am. Chem. Soc., 2009, 131, 15576. [2] M. Melucci, E. Treossi, L. Ortolani, G. Giambastiani, V. Morandi, P. Klar, C. Casiraghi, P. Samorì, and V. Palermo, J. Mater. Chem., 2010, 20, 9052. [3] J.M. Mativetsky, E. Treossi, E. Orgiu, M. Melucci, G.P. Veronese, P. Samorì, and V. Palermo, J. Am. Chem. Soc., 2010, 132, 14130. [4] A. Liscio, G.P. Veronese, E. Treossi, F. Suriano, F. Rossella, V. Bellani, R. Rizzoli, P. Samorì and V. Palermo, J. Mater. Chem., 2011, 21, 2924. [5] J.M. Mativetsky, A. Liscio, E. Treossi, E. Orgiu, A. Zanelli, P. Samorì , V. Palermo, J. Am. Chem. Soc., 2011, 133, 14320
Resumo:
Hybrid Elektrodenmaterialien (HEM) sind der Schlüssel zu grundlegenden Fortschritten in der Energiespeicherung und Systemen zur Energieumwandlung, einschließlich Lithium-Ionen-Batterien (LiBs), Superkondensatoren (SCs) und Brennstoffzellen (FCs). Die faszinierenden Eigenschaften von Graphen machen es zu einem guten Ausgangsmaterial für die Darstellung von HEM. Jedoch scheitern traditionelle Verfahren zur Herstellung von Graphen-HEM (GHEM) scheitern häufig an der fehlenden Kontrolle über die Morphologie und deren Einheitlichkeit, was zu unzureichenden Grenzflächenwechselwirkungen und einer mangelhaften Leistung des Materials führt. Diese Arbeit konzentriert sich auf die Herstellung von GHEM über kontrollierte Darstellungsmethoden und befasst sich mit der Nutzung von definierten GHEM für die Energiespeicherung und -umwandlung. Die große Volumenausdehnung bildet den Hauptnachteil der künftigen Lithium-Speicher-Materialien. Als erstes wird ein dreidimensionaler Graphen Schaumhybrid zur Stärkung der Grundstruktur und zur Verbesserung der elektrochemischen Leistung des Fe3O4 Anodenmaterials dargestellt. Der Einsatz von Graphenschalen und Graphennetzen realisiert dabei einen doppelten Schutz gegen die Volumenschwankung des Fe3O4 bei dem elektrochemischen Prozess. Die Leistung der SCs und der FCs hängt von der Porenstruktur und der zugänglichen Oberfläche, beziehungsweise den katalytischen Stellen der Elektrodenmaterialien ab. Wir zeigen, dass die Steuerung der Porosität über Graphen-basierte Kohlenstoffnanoschichten (HPCN) die zugängliche Oberfläche und den Ionentransport/Ladungsspeicher für SCs-Anwendungen erhöht. Desweiteren wurden Stickstoff dotierte Kohlenstoffnanoschichten (NDCN) für die kathodische Sauerstoffreduktion (ORR) hergestellt. Eine maßgeschnittene Mesoporosität verbunden mit Heteroatom Doping (Stickstoff) fördert die Exposition der aktiven Zentren und die ORR-Leistung der metallfreien Katalysatoren. Hochwertiges elektrochemisch exfoliiertes Graphen (EEG) ist ein vielversprechender Kandidat für die Darstellung von GHEM. Allerdings ist die kontrollierte Darstellung von EEG-Hybriden weiterhin eine große Herausforderung. Zu guter Letzt wird eine Bottom-up-Strategie für die Darstellung von EEG Schichten mit einer Reihe von funktionellen Nanopartikeln (Si, Fe3O4 und Pt NPs) vorgestellt. Diese Arbeit zeigt einen vielversprechenden Weg für die wirtschaftliche Synthese von EEG und EEG-basierten Materialien.
Resumo:
Animal models suggest that reduced nitric oxide (NO) synthase activity results in lower values of exhaled NO (eNO) present at birth in those individuals who are going to develop chronic lung disease of infancy (CLDI). Online tidal eNO was measured in 39 unsedated pre-term infants with CLDI (mean gestational age (GA) 27.3 weeks) in comparison with 23 healthy pre-term (31.6 weeks) and 127 term infants (39.9 weeks) at 44 weeks post-conceptional age, thus after the main inflammatory response. NO output (NO output (V'(NO)) = eNO x flow) was calculated to account for tidal- flow-related changes. Sex, maternal atopic disease and environmental factors (smoking, caffeine) were controlled for. The mean eNO was not different (14.9 ppb in all groups) but V'(NO) was lower in CLDI compared with healthy term infants (0.52 versus 0.63 nL x s(-1)). Values for healthy pre-term infants were between these two groups (0.58 nL x s(-1)). Within all pre-term infants (n = 62), V'(NO) was reduced in infants with low GA, high clinical risk index for babies scores and longer duration of oxygen therapy but not associated with post-natal factors, such as ventilation or corticosteroid treatment. After accounting for flow, the lower nitric oxide output in premature infants with chronic lung disease of infancy is consistent with the hypothesis of nitric oxide metabolism being involved in chronic lung disease of infancy.
Resumo:
Graphene, which is a two-dimensional carbon material, exhibits unique properties that promise its potential applications in photovoltaic devices. Dye-sensitized solar cell (DSSC) is a representative of the third generation photovoltaic devices. Therefore, it is important to synthesize graphene with special structures, which possess excellent properties for dye-sensitized solar cells. This dissertation research was focused on (1) the effect of oxygen content on the structure of graphite oxide, (2) the stability of graphene oxide solution, (3) the application of graphene precipitate from graphene oxide solution as counter electrode for DSSCs, (4) the development of a novel synthesis method for the three-dimensional graphene with honeycomb-like structure, and (5) the exploration of honeycomb structured graphene (HSG) as counter electrodes for DSSCs. Graphite oxide is a crucial precursor to synthesize graphene sheets via chemical exfoliation method. The relationship between the oxygen content and the structures of graphite oxides was still not explored. In this research, the oxygen content of graphite oxide is tuned by changing the oxidation time and the effect of oxygen content on the structure of graphite oxide was evaluated. It has been found that the saturated ratio of oxygen to carbon is 0.47. The types of functional groups in graphite oxides, which are epoxy, hydroxyl, and carboxylgroups, are independent of oxygen content. However, the interplanar space and BET surface area of graphite oxide linearly increases with increasing O/C ratio. Graphene oxide (GO) can easily dissolve in water to form a stable homogeneous solution, which can be used to fabricate graphene films and graphene based composites. This work is the first research to evaluate the stability of graphene oxide solution. It has been found that the introduction of strong electrolytes (HCl, LiOH, LiCl) into GO solution can cause GO precipitation. This indicates that the electrostatic repulsion plays a critical role in stabilizing aqueous GO solution. Furthermore, the HCl-induced GO precipitation is a feasible approach to deposit GO sheets on a substrate as a Pt-free counter electrode for a dye-sensitized solar cell (DSSC), which exhibited 1.65% of power conversion efficiency. To explore broad and practical applications, large-scale synthesis with controllable integration of individual graphene sheets is essential. A novel strategy for the synthesis of graphene sheets with three-dimensional (3D) Honeycomb-like structure has been invented in this project based on a simple and novel chemical reaction (Li2O and CO to graphene and Li2CO3). The simultaneous formation of Li2CO3 with graphene not only can isolate graphene sheets from each other to prevent graphite formation during the process, but also determine the locally curved shape of graphene sheets. After removing Li2CO3, 3D graphene sheets with a honeycomb-like structure were obtained. This would be the first approach to synthesize 3D graphene sheets with a controllable shape. Furthermore, it has been demonstrated that the 3D Honeycomb-Structured Graphene (HSG) possesses excellent electrical conductivity and high catalytic activity. As a result, DSSCs with HSG counter electrodes exhibit energy conversion efficiency as high as 7.8%, which is comparable to that of an expensive noble Pt electrode.
Resumo:
A family of titania derived nanocomposites synthesized via sol-gel and hydrothermal routes exhibit excellent performance for the photocatalytic degradation of two important exemplar water pollutants, oxytetracycline and Congo Red. Low loadings of Co3O4 nanoparticles dispersed over the surfaces of anatase TiO2 confer visible light photoactivity for the aqueous phase decomposition of organics through the resulting heterojunction and reduced band gap. Subsequent modification of these Co3O4/TiO2 composites by trace amounts of graphene oxide nanosheets in the presence of a diamine linker further promotes both oxytetracycline and Congo Red photodegradation under simulated solar and visible irradiation, through a combination of enhanced photoresponse and consequent radical generation. Radical quenching and fluorescence experiments implicate holes and hydroxyl radicals as the respective primary and secondary active species responsible for oxidative photodegradation of pollutants.
Resumo:
O desenvolvimento da nanotecnologia vem se intensificando nos últimos anos. Sendo que os NM já estão sendo utilizados em vários produtos disponíveis no mercado. Dentre os NM mais utilizados estão os compostos de carbono que embora sejam compostos somente por este elemento podem ter estruturas diferentes que refletem em suas aplicações e possivelmente em seus efeitos. Dentre os NM de carbono, o grafeno e o óxido de grafeno apresentam promissoras características que ampliam sua utilização em diversos segmentos desde eletrônicos até a distribuição de medicamentos. A intensificação da produção e utilização destes NM é acompanhada pela liberação destes nanomateriais no ambiente que pode afetar os organismos vivos, principalmente os animais aquáticos. Entretanto, pouco se sabe sobre os efeitos do óxido de grafeno em crustáceos de importância comercial como é o caso do camarão branco Litopenaeus vannamei. Portanto, a presente dissertação teve como objetivo avaliar os efeitos biológicos da exposição ao óxido de grafeno em diferentes tecidos do camarão.
Resumo:
The design of molecular sensors plays a very important role within nanotechnology and especially in the development of different devices for biomedical applications. Biosensors can be classified according to various criteria such as the type of interaction established between the recognition element and the analyte or the type of signal detection from the analyte (transduction). When Raman spectroscopy is used as an optical transduction technique the variations in the Raman signal due to the physical or chemical interaction between the analyte and the recognition element has to be detected. Therefore any significant improvement in the amplification of the optical sensor signal represents a breakthrough in the design of molecular sensors. In this sense, Surface-Enhanced Raman Spectroscopy (SERS) involves an enormous enhancement of the Raman signal from a molecule in the vicinity of a metal surface. The main objective of this work is to evaluate the effect of a monolayer of graphene oxide (GO) on the distribution of metal nanoparticles (NPs) and on the global SERS enhancement of paminothiophenol (pATP) and 4-mercaptobenzoic acid (4MBA) adsorbed on this substrate. These aromatic bifunctional molecules are able to interact to metal NPs and also they offer the possibility to link with biomolecules. Additionally by decorating Au or Ag NPs on graphene sheets, a coupled EM effect caused by the aggregation of the NPs and strong electronic interactions between Au or Ag NPs and the graphene sheets are considered to be responsible for the significantly enhanced Raman signal of the analytes [1-2]. Since there are increasing needs for methods to conduct reproducible and sensitive Raman measurements, Grapheneenhanced Raman Scattering (GERS) is emerging as an important method [3].
Resumo:
Modern world suffers from an intense water crisis. Emerging contaminants represent one of the most concerning elements of this issue. Substances, molecules, ions, and microorganisms take part in this vast and variegated class of pollutants, which main characteristic is to be highly resistant to traditional water purification technologies. An intense international research effort is being carried out in order to find new and innovative solutions to this problem, and graphene-based materials are one of the most promising options. Graphene oxide (GO) is a nanostructured material where domains populated by oxygenated groups alternate with interconnected areas of sp2 hybridized carbon atoms, on the surface of a one-atom thick nanosheets. GO can adsorb a great number of molecules and ions on its surface, thanks to the variety of different interactions that it can express, such as hydrogen bonding, p-p stacking, and electrostatic and hydrophobic interaction. These characteristics, added to the high superficial area, make it an optimal material for the development of innovative materials for drinking water remediation. The main concern in the use of GO in this field is to avoid secondary contaminations (i.e. GO itself must not become a pollutant). This issue can be faced through the immobilization of GO onto polymeric substrates, thus developing composite materials. The use of micro/ultrafiltration polymeric hollow fibers as substrates allows the design of adsorptive membranes, meaning devices that can perform filtration and adsorption simultaneously. In this thesis, two strategies for the development of adsorptive membranes were investigated: a core-shell strategy, where hollow fibers are coated with GO, and a coextrusion strategy, where GO is embedded in the polymeric matrix of the fibers. The so-obtained devices were exploited for both fundamental studies (i.e. molecular and ionic behaviour in between GO nanosheets) and real applications (the coextruded material is now at TRL 9).
Resumo:
The behavior of two cationic copper complexes of acetylacetonate and 2,2'-bipyridine or 1,10-phenanthroline, [Cu(acac)(bipy)]Cl (1) and [Cu(acac)(phen)]Cl (2), in organic solvents and ionic liquids, was studied by spectroscopic and electrochemical techniques. Both complexes showed solvatochromism in ionic liquids although no correlation with solvent parameters could be obtained. By EPR spectroscopy rhombic spectra with well-resolved superhyperfine structure were obtained in most ionic liquids. The spin Hamiltonian parameters suggest a square pyramidal geometry with coordination of the ionic liquid anion. The redox properties of the complexes were investigated by cyclic voltammetry at a Pt electrode (d = 1 mm) in bmimBF(4) and bmimNTf(2) ionic liquids. Both complexes 1 and 2 are electrochemically reduced in these ionic media at more negative potentials than when using organic solvents. This is in agreement with the EPR characterization, which shows lower A(z) and higher g(z) values for the complexes dissolved in ionic liquids, than in organic solvents, due to higher electron density at the copper center. The anion basicity order obtained by EPR is NTf2-, N(CN)(2)(-), MeSO4- and Me2PO4-, which agrees with previous determinations. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Background and aim: given that obesity is an independent risk factor for the development of cardiovascular diseases we decided to investigate the mechanisms involved in microvascular dysfunction using a monosodium glutamate (MSG)-induced model of obesity, which allows us to work on both normotensive and normoglycemic conditions. Methods and results: Male offspring of Wistar rats received MSG from the second to the sixth day after birth. Sixteen-week-old MSG rats displayed higher Lee index, fat accumulation, dyslipidemia and insulin resistance, with no alteration in glycemia and blood pressure. The effect of norepinephrine (NE), which was increased in MSG rats, was potentiated by L-nitro arginine methyl ester (L-NAME) or tetraethylammonium (TEA) and was reversed by indomethacin and NS-398. Sensitivity to acetylcholine (ACh), which was reduced in MSG rats, was further impaired by L-NAME or TEA, and was corrected by indomethacin, NS-398 and tetrahydrobiopterin (BH4). MSG rats displayed increased endothelium-independent relaxation to sodium nitroprusside. A reduced prostacyclin/tromboxane ratio was found in the mesenteric beds of MSG rats. Mesenteric arterioles of MSG rats also displayed reduced nitric oxide (NO) production along with increased reactive oxygen species (ROS) generation; these were corrected by BH4 and either L-NAME or superoxide dismutase, respectively. The protein expression of eNOS and cyclooxygenase (COX)-2 was increased in mesenteric arterioles from MSG rats. Conclusion: Obesity/insulin resistance has a detrimental impact on vascular function. Reduced NO bioavailability and increased ROS generation from uncoupled eNOS and imbalanced release of COX products from COX-2 play a critical role in the development of these vascular alterations (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
It has been well-documented that leukotrienes (LTs) are released in allergic lung inflammation and that they participate in the physiopathology of asthma. A role for LTs in innate immunity has recently emerged: Cys-LTs were shown to enhance Fc gamma R-mediated phagocytosis by alveolar macrophages (AMs). Thus, using a rat model of asthma, we evaluated Fc gamma R-mediated phagocytosis and killing of Klebsiella pneumoniae by AMs. The effect of treatment with a cys-LT antagonist (montelukast) on macrophage function was also investigated. Male Wistar rats were immunized twice with OVA/alumen intraperitoneally and challenged with OVA aerosol. After 24 h, the animals were killed, and the AMs were obtained by bronchoalveolar lavage. Macrophages were cultured with IgG-opsonized red blood cells (50: 1) or IgG-opsonized K. pneumoniae (30: 1), and phagocytosis or killing was evaluated. Leukotriene C(4) and nitric oxide were quantified by the EIA and Griess methods, respectively. The results showed that AMs from sensitized and challenged rats presented a markedly increased phagocytic capacity via Fc gamma R (10X compared to controls) and enhanced killing of K. pneumoniae (4X higher than controls). The increased phagocytosis was inhibited 15X and killing 3X by treatment of the rats with montelukast, as compared to the non-treated group. cys-LT addition increased phagocytosis in control AMs but had no effect on macrophages from allergic lungs. Montelukast reduced nitric oxide (39%) and LTC(4) (73%). These results suggest that LTs produced during allergic lung inflammation potentiate the capacity of AMs to phagocytose and kill K. pneumonia via Fc gamma R. Copyright (C) 2010 S. Karger AG, Basel