928 resultados para Electrically conducting polymers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cell-specific delivery of polynucleic acids (e.g., DNA, RNA), gene therapy, has the potential to treat various diseases. In this chapter we discuss the use of organic electronic materials as non-viral gene delivery vectors and the great potential for electrochemically triggered gene delivery. We highlight some examples in this chapter based on fullerenes (bucky balls and carbon nanotubes), graphenes and electroactive polymers, particularly those that include experiments in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermally stable elastomeric composites based on ethylene-propylene-diene monomer (EPDM) and conducting polymer-modified carbon black (CPMCB) additives were produced by casting and crosslinked by compression molding. CPMCB represent a novel thermally stable conductive compound made via ""in situ"" deposition of intrinsically conducting polymers (ICP) such as polyaniline or polypyrrole on carbon black particles. Thermogravimetric analysis showed that the composites are thermally stable with no appreciable degradation at ca. 300 degrees C. Incorporating CPMCB has been found to be advantageous to the processing of composites, as the presence of ICP lead to a better distribution of the filler within the rubber matrix, as confirmed by morphological analysis. These materials have a percolation threshold range of 5-10 phr depending on the formulation and electrical dc conductivity values in the range of 1 x 10(-3) to 1 x 10(-2) S cm(-1) above the percolation threshold. A less pronounced reinforcing effect was observed in composites produced with ICP-modified additives in relation to those produced only with carbon black. The results obtained in this study show the feasibility of this method for producing stable, electrically conducting composites with elastomeric characteristics. POLYM. COMPOS., 30:897-906, 2009. (C) 2008 Society of Plastics Engineers

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conducting polymers have the combined advantages of metal conductivity with ease in processing and biocompatibility; making them extremely versatile for biosensor and tissue engineering applications. However, the inherent brittle property of conducting polymers limits their direct use in such applications which generally warrant soft and flexible material responses. Addition of fillers increases the material compliance, but is achieved at the cost of reduced electrical conductivity. To retain suitable conductivity without compromising the mechanical properties, we fabricate an electroactive blend (dPEDOT) using low grade PEDOT: PSS as the base conducting polymer with polyvinyl alcohol as filler and glycerol as a dopant. Bulk dPEDOT films show a thermally stable response till 110 degrees C with over seven fold increase in room temperature conductivity as compared to 0.002 S cm(-1) for pristine PEDOT: PSS. We characterize the nonlinear stress-strain response of dPEDOT, well described using a Mooney-Rivlin hyperelastic model, and report elastomer-like moduli with ductility similar to fives times its original length. Dynamic mechanical analysis shows constant storage moduli over a large range of frequencies with corresponding linear increase in tan(delta). We relate the enhanced performance of dPEDOT with the underlying structural constituents using FTIR and AFM microscopy. These data demonstrate specific interactions between individual components of dPEDOT, and their effect on surface topography and material properties. Finally, we show biocompatibility of dPEDOT using fibroblasts that have comparable cell morphologies and viability as the control, which make dPEDOT attractive as a biomaterial.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A critical limitation that has hampered widespread application of the electrically conducting reduced graphene oxide (r-GO) is its poor aqueous dispersibility. Here we outline a strategy to obtain water-dispersible conducting r-GO sheets, free of any stabilizing agents, by exploiting the fact that the kinetics of the photoreduction of the insulating GO is heterogeneous. We show that by controlling UV exposure times and pH, we can obtain r-GO sheets with the conducting sp(2)-graphitic domains restored but with the more acidic carboxylic groups, responsible for aqueous dispersibility, intact. The resultant photoreduced r-GO sheets are both conducting and water-dispersible.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Here we demonstrate a novel application that employs the ion exchange properties of conducting polymers (CP) to modulate the detection window of a CP based biosensor under electrical stimuli. The detection window can be modulated by electrochemically controlling the degree of swelling of the CP associated with ion transport in and out of the polymer. We show that the modulation in the detection window of a caffeine imprinted polypyrrole biosensor, and by extension other CP based biosensors, can be achieved with this mechanism. Such dynamic modulation in the detection window has great potential for the development of smart biosensors, where the sensitivity of the sensor can be dynamically optimized for a specific test solution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The applications of scanning probe microscopy (SPM) in intrinsically conducting polymer research is briefly reviewed, including morphology observation, nanofabrication, microcosmic electrical property measurements, electrochemistry researches, in-situ measurements of film thickness change, and so on. At the same time, some important variations of SPM and the related techniques are briefly introduced. Finally, the future development of SPM in the study of intrinsically conducting polymers is prospected.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Organic conducting polymers have attracted much interest in material science. This letter reports potentiometric response behavior of polypyrrole (PPy)polymer film electrodes prepared by electrochemical polymerization, and a new kind of ion selective

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conducting polymers are excellent microwave absorbers and they show technological advantage when compared with inorganic electromagnetic absorbing materials, being light weight , easily processable, and the ability of changing the electromagnetic properties with nature and amount of dopants, synthesis conditions, etc. In this paper we report the synthesis, dielectric properties, and expected application of conducting composites based on polyaniline (PAN). Cyclohexanone soluble conducting PAN composites of microwave conductivity 12.5 S/m was synthesized by the in situ polymerization of aniline in the presence of emulsion grade polyvinyl chloride. The dielectric properties of the composites, especially the dielectric loss, conductivity, dielectric heating coefficient , absorption coefficient, and penetration depth, were studied using a HP8510 vector network analyzer. The microwave absorption of the composites were studied at different frequency bands i.e, S, C, and X bands (2-12 GHz). The absorption coefficient was found to be higher than 200 m -' and it can be used for making microwave absorbers in space applications .

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conducting polymers are excellent microwave absorbers and they show technological advantage when compared with inorganic electromagnetic absorbing materials, being light weight , easily processable, and the ability of changing the electromagnetic properties with nature and amount of dopants, synthesis conditions, etc. In this paper we report the synthesis, dielectric properties, and expected application of conducting composites based on polyaniline (PAN). Cyclohexanone soluble conducting PAN composites of microwave conductivity 12.5 S/m was synthesized by the in situ polymerization of aniline in the presence of emulsion grade polyvinyl chloride. The dielectric properties of the composites, especially the dielectric loss, conductivity, dielectric heating coefficient , absorption coefficient, and penetration depth, were studied using a HP8510 vector network analyzer. The microwave absorption of the composites were studied at different frequency bands i.e, S, C, and X bands (2-12 GHz). The absorption coefficient was found to be higher than 200 m -' and it can be used for making microwave absorbers in space applications

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The microwave and electrical applications of some important conducting polymers are analyzed in this investigation.One of the major drawbacks of conducting polymers is their poor processability,and a solution to overcome this is sought in this investigation.Conducting polymer thermoplastic composites were prepared by the insitu polymerization method to improve the extent of miscibility probably to a semi IPN level.The attractive features of the conducting composite developed are excellent processability,good microwave and electrical conductivity,good microwave absorption,load sensitivity and satisfactory mechanical properties.The composite shows typical frequency selective microwave absorption and refelection behaviors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The search for new materials especially those possessing special properties continues at a great pace because of ever growing demands of the modern life. The focus on the use of intrinsically conductive polymers in organic electronic devices has led to the development of a totally new class of smart materials. Polypyrrole (PPy) is one of the most stable known conducting polymers and also one of the easiest to synthesize. In addition, its high conductivity, good redox reversibility and excellent microwave absorbing characteristics have led to the existence of wide and diversified applications for PPy. However, as any conjugated conducting polymer, PPy lacks processability, flexibility and strength which are essential for industrial requirements. Among various approaches to making tractable materials based on PPy, incorporating PPy within an electrically insulating polymer appears to be a promising method, and this has triggered the development of blends or composites. Conductive elastomeric composites of polypyrrole are important in that they are composite materials suitable for devices where flexibility is an important parameter. Moreover these composites can be moulded into complex shapes. In this work an attempt has been made to prepare conducting elastomeric composites by the incorporation of PPy and PPy coated short Nylon-6 fiber with insulating elastomer matrices- natural rubber and acrylonitrile butadiene rubber. It is well established that mechanical properties of rubber composites can be greatly improved by adding short fibers. Generally short fiber reinforced rubber composites are popular in industrial fields because of their processing advantages, low cost, and their greatly improved technical properties such as strength, stiffness, modulus and damping. In the present work, PPy coated fiber is expected to improve the mechanical properties of the elastomer-PPy composites, at the same time increasing the conductivity. In addition to determination of DC conductivity and evaluation of mechanical properties, the work aims to study the thermal stability, dielectric properties and electromagnetic interference shielding effectiveness of the composites. The thesis consists of ten chapters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Light emitting polymers (LEPs) are considered as the second generation of conducting polymers. A Prototype LEP device based on electroluminescence emission of poly(p-phenylenevinylene) (PPV) was first assembled in 1990. LEPs have progressed tremendously over the past 20 years. The development of new LEP derivatives are important because polymer light emitting diodes (PLEDs) can be used for the manufacture of next-generation displays and other optoelectronic applications such as lasers, photovoltaic cells and sensors. Under this circumstance, it is important to understand thermal, structural, morphological, electrochemical and photophysical characteristics of luminescent polymers. In this thesis the author synthesizes a series of light emitting polymers that can emit three primary colors (RGB) with high efficiency

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polymers with conjugated π-electron backbone display unusual electronic properties such as low energy optical transition, low ionization potentials, and high electron affinities. The properties that make these materials attractive include a wide range of electrical conductivity, mechanical flexibility and thermal stability. Some of the potential applications of these conjugated polymers are in sensors, solar cells, field effect transistors, field emission and electrochromic displays, supercapacitors and energy storage. With recent advances in the stability of conjugated polymer materials, and improved control of properties, a growing number of applications are currently being explored. Some of the important applications of conducting polymers include: they are used in electrostatic materials, conducting adhesives, shielding against electromagnetic interference (EMI), artificial nerves, aircraft structures, diodes, and transistors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the field of conducting polymers, both poly(pyrrole) and poly(thiophene) have been investigated extensively and are used currently in a wide variety of applications including microelectronics, electrode materials, sensors and optoelectronics. Amongst these polymers, 3- and 3,4- substituted poly(pyrroles) and poly(thiophenes) have received significant attention in recent years as demonstrated by the increase in the number of patents and publications that describe their use. This review covers the development in the synthesis of 3- and 3,4- Substituted poly(pyrroles) and poly(thiophenes) over the last 30 years, their polymerisation in addition to describing the material properties and applications of the resulting polymers. In particular, this review focuses upon the variety of methodologies employed for the synthesis of 3- and 3,4-substituted pyrroles and thiophenes as well as upon the broad range of functional groups that can be attached to the heterocyclic ring system in order to tailor the properties of the resulting polymers.