975 resultados para Electrical load forecasting
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Rising fuel prices and environmental concerns are threatening the stability of current electrical grid systems. These factors are pushing the automobile industry towards more effcient, hybrid vehicles. Current trends show petroleum is being edged out in favor of electricity as the main vehicular motive force. The proposed methods create an optimized charging control schedule for all participating Plug-in Hybrid Electric Vehicles in a distribution grid. The optimization will minimize daily operating costs, reduce system losses, and improve power quality. This requires participation from Vehicle-to-Grid capable vehicles, load forecasting, and Locational Marginal Pricing market predictions. Vehicles equipped with bidirectional chargers further improve the optimization results by lowering peak demand and improving power quality.
Resumo:
Tämän työn tavoitteena on skenaarioiden avulla luoda pitkän aikavälin alueellinen sähkökuormien kehitysennuste Rovaniemen Verkko Oy:lle. Pitkän aikavälin kuormitusennusteet ovat välttämättömiä verkon kehittämisen pohjalle, jotta verkko voidaan mitoittaa vastaamaan kuormitusta pitkälle tulevaisuuteen tekniset ja taloudelliset vaatimukset huomioiden. Kuormitusennusteen onkin jatkossa tarkoitus toimia apuvälineenä verkon strategisessa kehittämisessä. Pohjana kuormitusennusteissa on tilastokeskuksen ja Rovaniemen kaupungin väestö- ja työpaikkaennusteet. Väestöennusteiden ja erilaisten rakentamistilastoiden avulla arvioidaan uudisrakentamisen määrä tulevaisuudessa. Uudisrakentamisen kuormitusvaikutuksiin päästään työssä määritettyjen paikallisten ja rakennustyyppikohtaisten sähkön ominaiskulutuksien avulla. Kuormituksien alueellinen sijoittautuminen arvioidaan kaavoituksen ja kaupungin maankäytön toteuttamisohjelman avulla. Työssä tutkitaan myös tulevaisuudessa sähkönkäytössä tapahtuvien useiden muutosten vaikutusta alueelliseen kuormitukseen. Näitä muutoksia ovat muun muassa sähköautojen, hajautetun tuotannon, lämpöpumppujen ja kysynnän jouston lisääntyminen. Myös rakennusten jatkuvasti parantuva energiatehokkuus aiheuttaa muutoksia sähkön kulutukseen.
Resumo:
Power system organization has gone through huge changes in the recent years. Significant increase in distributed generation (DG) and operation in the scope of liberalized markets are two relevant driving forces for these changes. More recently, the smart grid (SG) concept gained increased importance, and is being seen as a paradigm able to support power system requirements for the future. This paper proposes a computational architecture to support day-ahead Virtual Power Player (VPP) bid formation in the smart grid context. This architecture includes a forecasting module, a resource optimization and Locational Marginal Price (LMP) computation module, and a bid formation module. Due to the involved problems characteristics, the implementation of this architecture requires the use of Artificial Intelligence (AI) techniques. Artificial Neural Networks (ANN) are used for resource and load forecasting and Evolutionary Particle Swarm Optimization (EPSO) is used for energy resource scheduling. The paper presents a case study that considers a 33 bus distribution network that includes 67 distributed generators, 32 loads and 9 storage units.
Resumo:
This paper addresses the optimal involvement in derivatives electricity markets of a power producer to hedge against the pool price volatility. To achieve this aim, a swarm intelligence meta-heuristic optimization technique for long-term risk management tool is proposed. This tool investigates the long-term opportunities for risk hedging available for electric power producers through the use of contracts with physical (spot and forward contracts) and financial (options contracts) settlement. The producer risk preference is formulated as a utility function (U) expressing the trade-off between the expectation and the variance of the return. Variance of return and the expectation are based on a forecasted scenario interval determined by a long-term price range forecasting model. This model also makes use of particle swarm optimization (PSO) to find the best parameters allow to achieve better forecasting results. On the other hand, the price estimation depends on load forecasting. This work also presents a regressive long-term load forecast model that make use of PSO to find the best parameters as well as in price estimation. The PSO technique performance has been evaluated by comparison with a Genetic Algorithm (GA) based approach. A case study is presented and the results are discussed taking into account the real price and load historical data from mainland Spanish electricity market demonstrating the effectiveness of the methodology handling this type of problems. Finally, conclusions are dully drawn.
Resumo:
The integration of Plug-in electric vehicles in the transportation sector has a great potential to reduce oil dependency, the GHG emissions and to contribute for the integration of renewable sources into the electricity generation mix. Portugal has a high share of wind energy, and curtailment may occur, especially during the off-peak hours with high levels of hydro generation. In this context, the electric vehicles, seen as a distributed storage system, can help to reduce the potential wind curtailments and, therefore, increase the integration of wind power into the power system. In order to assess the energy and environmental benefits of this integration, a methodology based on a unit commitment and economic dispatch is adapted and implemented. From this methodology, the thermal generation costs, the CO2 emissions and the potential wind generation curtailment are computed. Simulation results show that a 10% penetration of electric vehicles in the Portuguese fleet would increase electrical load by 3% and reduce wind curtailment by only 26%. This results from the fact that the additional generation required to supply the electric vehicles is mostly thermal. The computed CO2 emissions of the EV are 92 g CO2/kWh which become closer to those of some new ICE engines.
Resumo:
Työssä tutkitaan ilmalämpöpumppujen kokonaisvaltaista vaikutusta sähköverkkoon. Tarkastelu aloitetaan lämpöpumppujen toiminnasta ja rakenteesta, josta jatketaan laitteen käytettävyyteen ja muiden lämmitysmenetelmien vertailuun. Sähköisten ominaisuuksien tarkastelussa pohditaan ilmalämpöpumppujen vaikutusta suomalaiseen sähköverkkoon muun muassa yleissähkötekniikan, taloudellisuuden ja energiatehokkuuden sekä häiriöiden kannalta. Tämä tutkielma rajoittuu pientaloihin, ja niihin asennettuihin ilma-ilmalämpöpumppuihin. Työn loppupäätelmänä on, että ilmalämpöpumppujen käytöstä ei juuri aiheudu vaikutuksia suomalaiseen sähköverkkoon. Suurimmat ilmalämpöpumppujen käytöstä syntyvät seuraukset kohdistuvat sähköverkkoyhtiöihin, joihin ilmalämpöpumput aiheuttavat taloudellisia menetyksiä. Suuret ja tulevaisuudessa kasvavat ilmalämpöpumppumäärät aiheuttavat sähköntuotantoon lisätehontarvetta huippukuorman aikaan. Toisaalta välitehoalueella tehontarve sekä energiankulutus pienenevät. Sähköverkoissa ei ole toistaiseksi havaittu ilmalämpöpumpuista johtuvia häiriöitä.
Resumo:
ABSTRACT The successful in the implementation of wind turbines depends on several factors, including: the wind resource at the installation site, the equipment used, project acquisition and operational costs. In this paper, the production of electricity from two small wind turbines was compared through simulation using the computer software HOMER - a national model of 6kW and an imported one of 5kW. The wind resources in three different cities were considered: Campinas (SP/BR), Cubatão (São Paulo/BR) and Roscoe (Texas/ USA). A wind power system connected to the grid and a wind isolated system - batteries were evaluated. The results showed that the energy cost ($/kWh) is strongly dependent on the windmill characteristics and local wind resource. Regarding the isolated wind system – batteries, the full supply guarantee to the simulated electrical load is only achieved with a battery bank with many units and high number of wind turbines, due to the intermittency of wind power.
Resumo:
One of the main aims of this thesis is to design an optimized commercial Photovoltaic (PV) system in Barbados from several variables such as racking type, module type and inverter type based on practicality, technical performance as well as financial returns to the client. Detailed simulations are done in PVSYST and financial models are used to compare different systems and their viability. Once the preeminent system is determined from a financial and performance perspective a detailed design is done using PVSYST and AutoCAD to design the most optimal PV system for the customer. In doing so, suitable engineering drawings are generated which are detailed enough for construction of the system. Detailed cost with quotes from relevant manufacturers, suppliers and estimators become instrumental in determining Balance of System Costs in addition to total project cost. The final simulated system is suggested with a PV capacity of 425kW and an inverter output of 300kW resulting in an array oversizing of 1.42. The PV system has a weighted Performance Ratio of 77 %, a specific yield of 1467 kWh/kWp and a projected annual production of 624 MWh/yr. This system is estimated to offset approximately 28 % of Carlton’s electrical load annually. Over the course of 20 years the PV system is projected to produce electricity at a cost of $0.201USD/kWh which is significantly lower than the $0.35 USD/kWh paid to the utility at the time of writing this thesis. Due to the high cost of electricity on the island, an attractive Feed-In-Tariff is not necessary to warrant the installation of a commercial System which over a lifetime which produces electricity at less than 60% of the cost to the user purchasing electricity from the utility. A simple payback period of 5.4 years, a return on investment of 17 % without incentives, in addition to an estimated diversion of 6840 barrels of oil or 2168 tonnes of CO2 further provides compelling justification for the installation of a commercial Photovoltaic System not only on Carlton A-1 Supermarket, but also island wide as well as regionally where most electricity supplies are from imported fossil fuels.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O conhecimento prévio do valor da carga é de extrema importância para o planejamento e operação dos sistemas de energia elétrica. Este trabalho apresenta os resultados de um estudo investigativo da aplicação de Redes Neurais Artificiais do tipo Perceptron Multicamadas com treinamento baseado na Teoria da Informação para o problema de Previsão de Carga a curto prazo. A aprendizagem baseada na Teoria da Informação se concentra na utilização da quantidade de informação (Entropia) para treinamento de uma rede neural artificial. Dois modelos previsores são apresentados sendo que os mesmos foram desenvolvidos a partir de dados reais fornecidos por uma concessionária de energia. Para comparação e verificação da eficiência dos modelos propostos um terceiro modelo foi também desenvolvido utilizando uma rede neural com treinamento baseado no critério clássico do erro médio quadrático. Os resultados alcançados mostraram a eficiência dos sistemas propostos, que obtiveram melhores resultados de previsão quando comparados ao sistema de previsão baseado na rede treinada pelo critério do MSE e aos sistemas previsores já apresentados na literatura.
Resumo:
Diversas atividades de planejamento e operação em sistemas de energia elétrica dependem do conhecimento antecipado e preciso da demanda de carga elétrica. Por este motivo, concessionárias de geração e distribuição de energia elétrica cada vez mais fazem uso de tecnologias de previsão de carga. Essas previsões podem ter um horizonte de curtíssimo, curto, médio ou longo prazo. Inúmeros métodos estatísticos vêm sendo utilizados para o problema de previsão. Todos estes métodos trabalham bem em condições normais, entretanto deixam a desejar em situações onde ocorrem mudanças inesperadas nos parâmetros do ambiente. Atualmente, técnicas baseadas em Inteligência Computacional vêm sendo apresentadas na literatura com resultados satisfatórios para o problema de previsão de carga. Considerando então a importância da previsão da carga elétrica para os sistemas de energia elétrica, neste trabalho, uma nova abordagem para o problema de previsão de carga via redes neurais Auto-Associativas e algoritmos genéticos é avaliada. Três modelos de previsão baseados em Inteligência Computacional são também apresentados tendo seus desempenhos avaliados e comparados com o sistema proposto. Com os resultados alcançados, pôde-se verificar que o modelo proposto se mostrou satisfatório para o problema de previsão, reforçando assim a aplicabilidade de metodologias de inteligência computacional para o problema de previsão de cargas.