887 resultados para Electrical distribution systems
Resumo:
More-electric vehicle technology is becoming prevalent in a number of transportation systems because of its ability to improve efficiency and reduce costs. This paper examines the specific case of an Uninhabited Autonomous Vehicle (UAV), and the system topology and control elements required to achieve adequate dc distribution voltage bus regulation. Voltage control methods are investigated and a droop control scheme is implemented on the system. Simulation results are also presented.
Resumo:
Harmonic distortion on voltages and currents increases with the increased penetration of Plug-in Electric Vehicle (PEV) loads in distribution systems. Wind Generators (WGs), which are source of harmonic currents, have some common harmonic profiles with PEVs. Thus, WGs can be utilized in careful ways to subside the effect of PEVs on harmonic distortion. This work studies the impact of PEVs on harmonic distortions and integration of WGs to reduce it. A decoupled harmonic three-phase unbalanced distribution system model is developed in OpenDSS, where PEVs and WGs are represented by harmonic current loads and sources respectively. The developed model is first used to solve harmonic power flow on IEEE 34-bus distribution system with low, moderate, and high penetration of PEVs, and its impact on current/voltage Total Harmonic Distortions (THDs) is studied. This study shows that the voltage and current THDs could be increased upto 9.5% and 50% respectively, in case of distribution systems with high PEV penetration and these THD values are significantly larger than the limits prescribed by the IEEE standards. Next, carefully sized WGs are selected at different locations in the 34-bus distribution system to demonstrate reduction in the current/voltage THDs. In this work, a framework is also developed to find optimal size of WGs to reduce THDs below prescribed operational limits in distribution circuits with PEV loads. The optimization framework is implemented in MATLAB using Genetic Algorithm, which is interfaced with the harmonic power flow model developed in OpenDSS. The developed framework is used to find optimal size of WGs on the 34-bus distribution system with low, moderate, and high penetration of PEVs, with an objective to reduce voltage/current THD deviations throughout the distribution circuits. With the optimal size of WGs in distribution systems with PEV loads, the current and voltage THDs are reduced below 5% and 7% respectively, which are within the limits prescribed by IEEE.
Resumo:
In this paper, the placement of sectionalizers, as well as, a cross-connection is optimally determined so that the objective function is minimized. The objective function employed in this paper consists of two main parts, the switch cost and the reliability cost. The switch cost is composed of the cost of sectionalizers and cross-connection and the reliability cost is assumed to be proportional to a reliability index, SAIDI. To optimize the allocation of sectionalizers and cross-connection problem realistically, the cost related to each element is considered as discrete. In consequence of binary variables for the availability of sectionalizers, the problem is extremely discrete. Therefore, the probability of local minimum risk is high and a heuristic-based optimization method is needed. A Discrete Particle Swarm Optimization (DPSO) is employed in this paper to deal with this discrete problem. Finally, a testing distribution system is used to validate the proposed method.
Resumo:
This paper presents a reliability-based reconfiguration methodology for power distribution systems. Probabilistic reliability models of the system components are considered and Monte Carlo method is used while evaluating the reliability of the distribution system. The reconfiguration is aimed at maximizing the reliability of the power supplied to the customers. A binary particle swarm optimization (BPSO) algorithm is used as a tool to determine the optimal configuration of the sectionalizing and tie switches in the system. The proposed methodology is applied on a modified IEEE 13-bus distribution system.
Resumo:
Deterministic models have been widely used to predict water quality in distribution systems, but their calibration requires extensive and accurate data sets for numerous parameters. In this study, alternative data-driven modeling approaches based on artificial neural networks (ANNs) were used to predict temporal variations of two important characteristics of water quality chlorine residual and biomass concentrations. The authors considered three types of ANN algorithms. Of these, the Levenberg-Marquardt algorithm provided the best results in predicting residual chlorine and biomass with error-free and ``noisy'' data. The ANN models developed here can generate water quality scenarios of piped systems in real time to help utilities determine weak points of low chlorine residual and high biomass concentration and select optimum remedial strategies.
Resumo:
The weighted-least-squares method using sensitivity-analysis technique is proposed for the estimation of parameters in water-distribution systems. The parameters considered are the Hazen-Williams coefficients for the pipes. The objective function used is the sum of the weighted squares of the differences between the computed and the observed values of the variables. The weighted-least-squares method can elegantly handle multiple loading conditions with mixed types of measurements such as heads and consumptions, different sets and number of measurements for each loading condition, and modifications in the network configuration due to inclusion or exclusion of some pipes affected by valve operations in each loading condition. Uncertainty in parameter estimates can also be obtained. The method is applied for the estimation of parameters in a metropolitan urban water-distribution system in India.
Resumo:
The specified range of free chlorine residual (between minimum and maximum) in water distribution systems needs to be maintained to avoid deterioration of the microbial quality of water, control taste and/or odor problems, and hinder formation of carcino-genic disinfection by-products. Multiple water quality sources for providing chlorine input are needed to maintain the chlorine residuals within a specified range throughout the distribution system. The determination of source dosage (i.e., chlorine concentrations/chlorine mass rates) at water quality sources to satisfy the above objective under dynamic conditions is a complex process. A nonlinear optimization problem is formulated to determine the chlorine dosage at the water quality sources subjected to minimum and maximum constraints on chlorine concentrations at all monitoring nodes. A genetic algorithm (GA) approach in which decision variables (chlorine dosage) are coded as binary strings is used to solve this highly nonlinear optimization problem, with nonlinearities arising due to set-point sources and non-first-order reactions. Application of the model is illustrated using three sample water distribution systems, and it indicates that the GA,is a useful tool for evaluating optimal water quality source chlorine schedules.
Resumo:
In drinking water distribution systems, three groups of living organisms are usually found in the biofilm and circulating water: heterotrophic bacteria, free-living protozoa, and macro-invertebrates. Indirect evidence suggests that protozoa grazing in distribution systems can partially eliminate biomass production and accidental microbiological pollution. This paper examines the biodiversit in drinking water distribution systems.