926 resultados para Electric current measurement


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ferroic-order parameters are useful as state variables in non-volatile information storage media because they show a hysteretic dependence on their electric or magnetic field. Coupling ferroics with quantum-mechanical tunnelling allows a simple and fast readout of the stored information through the influence of ferroic orders on the tunnel current. For example, data in magnetic random-access memories are stored in the relative alignment of two ferromagnetic electrodes separated by a non-magnetic tunnel barrier, and data readout is accomplished by a tunnel current measurement. However, such devices based on tunnel magnetoresistance typically exhibit OFF/ON ratios of less than 4, and require high powers for write operations (>1 × 10 6 A cm -2). Here, we report non-volatile memories with OFF/ON ratios as high as 100 and write powers as low as ∼1 × 10 4A cm -2 at room temperature by storing data in the electric polarization direction of a ferroelectric tunnel barrier. The junctions show large, stable, reproducible and reliable tunnel electroresistance, with resistance switching occurring at the coercive voltage of ferroelectric switching. These ferroelectric devices emerge as an alternative to other resistive memories, and have the advantage of not being based on voltage-induced migration of matter at the nanoscale, but on a purely electronic mechanism. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis is focused on the design and development of an integrated magnetic (IM) structure for use in high-power high-current power converters employed in renewable energy applications. These applications require low-cost, high efficiency and high-power density magnetic components and the use of IM structures can help achieve this goal. A novel CCTT-core split-winding integrated magnetic (CCTT IM) is presented in this thesis. This IM is optimized for use in high-power dc-dc converters. The CCTT IM design is an evolution of the traditional EE-core integrated magnetic (EE IM). The CCTT IM structure uses a split-winding configuration allowing for the reduction of external leakage inductance, which is a problem for many traditional IM designs, such as the EE IM. Magnetic poles are incorporated to help shape and contain the leakage flux within the core window. These magnetic poles have the added benefit of minimizing the winding power loss due to the airgap fringing flux as they shape the fringing flux away from the split-windings. A CCTT IM reluctance model is developed which uses fringing equations to accurately predict the most probable regions of fringing flux around the pole and winding sections of the device. This helps in the development of a more accurate model as it predicts the dc and ac inductance of the component. A CCTT IM design algorithm is developed which relies heavily on the reluctance model of the CCTT IM. The design algorithm is implemented using the mathematical software tool Mathematica. This algorithm is modular in structure and allows for the quick and easy design and prototyping of the CCTT IM. The algorithm allows for the investigation of the CCTT IM boxed volume with the variation of input current ripple, for different power ranges, magnetic materials and frequencies. A high-power 72 kW CCTT IM prototype is designed and developed for use in an automotive fuelcell-based drivetrain. The CCTT IM design algorithm is initially used to design the component while 3D and 2D finite element analysis (FEA) software is used to optimize the design. Low-cost and low-power loss ferrite 3C92 is used for its construction, and when combined with a low number of turns results in a very efficient design. A paper analysis is undertaken which compares the performance of the high-power CCTT IM design with that of two discrete inductors used in a two-phase (2L) interleaved converter. The 2L option consists of two discrete inductors constructed from high dc-bias material. Both topologies are designed for the same worst-case phase current ripple conditions and this ensures a like-for-like comparison. The comparison indicates that the total magnetic component boxed volume of both converters is similar while the CCTT IM has significantly lower power loss. Experimental results for the 72 kW, (155 V dc, 465 A dc input, 420 V dc output) prototype validate the CCTT IM concept where the component is shown to be 99.7 % efficient. The high-power experimental testing was conducted at General Motors advanced technology center in Torrence, Los Angeles. Calorific testing was used to determine the power loss in the CCTT IM component. Experimental 3.8 kW results and a 3.8 kW prototype compare and contrast the ferrite CCTT IM and high dc-bias 2L concepts over the typical operating range of a fuelcell under like-for-like conditions. The CCTT IM is shown to perform better than the 2L option over the entire power range. An 8 kW ferrite CCTT IM prototype is developed for use in photovoltaic (PV) applications. The CCTT IM is used in a boost pre-regulator as part of the PV power stage. The CCTT IM is compared with an industry standard 2L converter consisting of two discrete ferrite toroidal inductors. The magnetic components are compared for the same worst-case phase current ripple and the experimental testing is conducted over the operation of a PV panel. The prototype CCTT IM allows for a 50 % reduction in total boxed volume and mass in comparison to the baseline 2L option, while showing increased efficiency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The thesis is focused on the magnetic materials comparison and selection for high-power non-isolated dc-dc converters for industrial applications or electric, hybrid and fuel cell vehicles. The application of high-frequency bi-directional soft-switched dc-dc converters is also investigated. The thesis initially outlines the motivation for an energy-efficient transportation system with minimum environmental impact and reduced dependence on exhaustible resources. This is followed by a general overview of the power system architectures for electric, hybrid and fuel cell vehicles. The vehicle power sources and general dc-dc converter topologies are discussed. The dc-dc converter components are discussed with emphasis on recent semiconductor advances. A novel bi-directional soft-switched dc-dc converter with an auxiliary cell is introduced in this thesis. The soft-switching cell allows for the MOSFET's intrinsic body diode to operate in a half-bridge without reduced efficiency. The converter's mode-by-mode operation is analysed and closed-form expressions are presented for the average current gain of the converter. The design issues are presented and circuit limitations are discussed. Magnetic materials for the main dc-dc converter inductor are compared and contrasted. Novel magnetic material comparisons are introduced, which include the material dc bias capability and thermal conductivity. An inductor design algorithm is developed and used to compare the various magnetic materials for the application. The area-product analysis is presented for the minimum inductor size and highlights the optimum magnetic materials. Finally, the high-flux magnetic materials are experimentally compared. The practical effects of frequency, dc-bias, and converters duty-cycle effect for arbitrary shapes of flux density, air gap effects on core and winding, the winding shielding effect, and thermal configuration are investigated. The thesis results have been documented at IEEE EPE conference in 2007 and 2008, IEEE APEC in 2009 and 2010, and IEEE VPPC in 2010. A 2011 journal has been approved by IEEE Transactions on Power Electronics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The waves in commercial cells for electrolytic aluminium production originate at the interface between the liquid aluminium and electrolyte, but their effect can spread into the surrounding busbar network as electric current perturbation, and the total magnetic field acquires a time dependent component. The presented model for the wave development accounts for the nonuniform electric current distribution at the cathode and the whole network of the surrounding busbars. The magnetic field is computed for the continuous current in the fluid zones, all busbars and the ferromagnetic construction elements. When the electric current and the associated magnetic field are computed according to the actual electrical circuit and updated for all times, the instability growth rate is significantly affected. The presented numerical model for the wave and electromagnetic interaction demonstrates how different physical coupling factors are affecting the wave development in the electrolysis cells. These small amplitude self-sustained interface oscillations are damped in the presence of intense turbulent viscosity created by the horizontal circulation velocity field. Additionally, the horizontal circulation vortices create a pressure gradient contributing to the deformation of the interface. Instructive examples for the 500 kA demonstration cell are presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

From the early 1900s, some psychologists have attempted to establish their discipline as a quantitative science. In using quantitative methods to investigate their theories, they adopted their own special definition of measurement of attributes such as cognitive abilities, as though they were quantities of the type encountered in Newtonian science. Joel Michell has presented a carefully reasoned argument that psychological attributes lack additivity, and therefore cannot be quantities in the same way as the attributes of classical Newtonian physics. In the early decades of the 20th century, quantum theory superseded Newtonian mechanics as the best model of physical reality. This paper gives a brief, critical overview of the evolution of current measurement practices in psychology, and suggests the need for a transition from a Newtonian to a quantum theoretical paradigm for psychological measurement. Finally, a case study is presented that considers the implications of a quantum theoretical model for educational measurement. In particular, it is argued that, since the OECD’s Programme for International Student Assessment (PISA) is predicated on a Newtonian conception of measurement, this may constrain the extent to which it can make accurate comparisons of the achievements of different education systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The passage of an electric current through graphite or few-layer graphene can result in a striking structural transformation, but there is disagreement about the precise nature of this process. Some workers have interpreted the phenomenon in terms of the sublimation and edge reconstruction of essentially flat graphitic structures. An alternative explanation is that the transformation actually involves a change from a flat to a three-dimensional structure. Here we describe detailed studies of carbon produced by the passage of a current through graphite which provide strong evidence that the transformed carbon is indeed three-dimensional. The evidence comes primarily from images obtained in the scanning transmission electron microscope using the technique of high-angle annular dark-field imaging, and from a detailed analysis of electron energy loss spectra. We discuss the possible mechanism of the transformation, and consider potential applications of “three-dimensional bilayer graphene”.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, an experimental set-up which differs from the traditional ones is established in order to determine the moment of inertia of a right circular cone. Its angular variation and inertia ellipsoid are determined by means of an experimental study. In addition, a system that allows for the evaluation of the angular acceleration and torque through electric current or frequency measurement is utilized.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents the analysis and the design of a peak-current-controlled high-power-factor boost rectifier, with slope compensation, operating at constant frequency. The input current shaping is achieved, with continuous inductor current mode, with no multiplier to generate a current reference. The resulting overall circuitry is very simple, in comparison with the average-current-controlled boost rectifier. Experimental results are presented, taken from a laboratory prototype rated at 370 W and operating at 67 kHz. The measured power factor was 0.99, with a input current THD equal to 5.6%, for an input voltage THD equal to 2.26%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thin films of undoped and Sb-doped SnO2 have been prepared by a sol-gel dip-coating technique. For the high doping level (2-3 mol% Sb) n-type degenerate conduction is expected, however, measurements of resistance as a function of temperature show that doped samples exhibit strong electron trapping, with capture levels at 39 and 81 meV. Heating in a vacuum and irradiation with UV monochromatic light (305 nm) improve the electrical characteristics, decreasing the carrier capture at low temperature. This suggests an oxygen related level, which can be eliminated by a photodesorption process. Absorption spectral dependence indicates an indirect bandgap transition with Eg ≅ 3.5 eV. Current-voltage characteristics indicate a thermionic emission mechanism through interfacial states.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a high speed current mode CMOS comparator. The comparator was optimized for allows wide range input current 1mA, ±0.5uA resolution and has fast response. This circuit was implemented with 0.8μm CMOS n-well process with area of 120μm × 105μm and operates with 3.3V(±1.65V).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The pulsed electric acoustic technique, PEA, have been usually applied to probe space charge profiles in polymers. In this work we show preliminary results obtained with lead zirconate-titanate and niobium, PZTN, ferroelectric ceramic samples. Experiments showed that induced charge densities on sample electrodes are mainly due to the ferroelectric polarization of the sample. We present results of the typical PEA response and the procedure to deconvolute the signal in order to obtain the charge densities and the electric field profiles. The PEA setup allows us to show a non-uniform polarization during ferroelectric switching.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper discusses the utilization of Virtual Instrumentation to the implementation and evaluation of different power definitions, so that classical formulations and new definitions can be compared without the necessity of acquiring different power meters or analyzers. Accordingly, the definitions of IEEE Standard 1459-2000 for the measurement of power quantities under distorted and unbalanced situations, have been digitally implemented. Thus, several power and power factor components related to the decomposition of the measured voltage and current signals have been obtained. The proposed PC-based Virtual Instrument uses a high performance acquisition board and isolated sensors and transducers. All digital algorithms and routines have been implemented by means of a graphical development system. Regarding to the implementation of STD 1459, this paper also proposes several different algorithms to the required decompositions of voltage, current and power components. © 2005 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paperwork presents a Pulse Width Modulation (PWM) speed controller for an electric mini-baja-type car. A battery-fed 1-kW three-phase induction motor provides the electric vehicle traction. The open-loop speed control is implemented with an equal voltage/frequency ratio, in order to maintain a constant amount of torque on all velocities. The PWM is implemented by a low-cost 8-bit microcontroller provided with optimized ROM charts for distinct speed value implementations, synchronized transition between different charts and reduced odd harmonics generation. This technique was implemented using a single passenger mini-baja vehicle, and the essays have shown that its application resulted on reduced current consumption, besides eliminating mechanical parts. Copyright © 2007 by ABCM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a methodology for the placement and sizing evaluation of distributed generation (DG) in electric power systems. The candidate locations for DG placement are identified on the bases of Locational Marginal Prices (LMP's) obtained from an optimal power flow solution. The problem is formulated for two different objectives: social welfare maximization and profit maximization. For each DG unit an optimal placement is identified for each of the objectives.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a general modeling approach to investigate and to predict measurement errors in active energy meters both induction and electronic types. The measurement error modeling is based on Generalized Additive Model (GAM), Ridge Regression method and experimental results of meter provided by a measurement system. The measurement system provides a database of 26 pairs of test waveforms captured in a real electrical distribution system, with different load characteristics (industrial, commercial, agricultural, and residential), covering different harmonic distortions, and balanced and unbalanced voltage conditions. In order to illustrate the proposed approach, the measurement error models are discussed and several results, which are derived from experimental tests, are presented in the form of three-dimensional graphs, and generalized as error equations. © 2009 IEEE.