982 resultados para Elasticity Imaging Techniques
Resumo:
In recent years, modern techniques of medical imaging such as MDCT (multidetector-computed tomography) and MRI (magnetic resonance imaging) have pioneered post mortem (pm) investigations, especially in forensic medicine. Particularly pm angiography permits investigating the vascular system in a way which is not possible by performing only conventional autopsy. Beside these radiological methods, other modem visualizing techniques like the three dimensional (3D) surface scan have been implemented in order perform reconstructions of complex cases. By the use of pm imaging techniques, more objective and accurate documentations can be realized that permit an increase of quality in forensic investigations.
Resumo:
Recently a new measure of the cooperative behavior of simultaneous time series was introduced (Carmeli et al. NeuroImage 2005). This measure called S-estimator is defined from the embedding dimension in a state space. S-estimator quantifies the amount of synchronization within a data set by comparing the actual dimensionality of the set with the expected full dimensionality of the asynchronous set. It has the advantage of being a multivariate measure over traditionally used in systems neuroscience bivariate measures of synchronization. Multivariate measures of synchronization are of particular interest for applications in the field of modern multichannel EEG research, since they easily allow mapping of local and/or regional synchronization and are compatible with other imaging techniques. We applied Sestimator to the analysis of EEG synchronization in schizophrenia patients vs. matched controls. The whole-head mapping with S-estimator revealed a specific pattern of local synchronization in schizophrenia patients. The differences in the landscape of synchronization included decreased local synchronization in the territories over occipital and midline areas and increased synchronization over temporal areas. In frontal areas, the S-estimator revealed a tendency for an asymmetry: decreased S-values over the left hemisphere were adjacent to increased values over the right hemisphere. Separate calculations showed reproducibility of this pattern across the main EEG frequency bands. The maintenance of the same synchronization landscape across EEG frequencies probably implies the structural changes in the cortical circuitry of schizophrenia patients. These changes are regionally specific and suggest that schizophrenia is a misconnectivity rather than hypo- or hyper-connectivity disorder.
Resumo:
Purpose/Aim: To review the embryological basis of a wide spectrum of anorectal malformations (ARM), to provide anatomical schemas showing the possiblelocations of fistulas in boys and girls and to present the typical imaging findings of these complex anomalies using various imaging methods with emphasis on3T-MRI.Content Organization: 1. Embryology. 2. Imaging techniques. 3. Normal 3T-MRI pelvic anatomy. 4. Ano-rectal malformations in boys: - Classification -Anatomic schemas of location of fistulas. - Imaging studies. 5. Ano-rectal malformations in girls: - Classification - Anatomic schemas of location of fistulas. -Imaging studies. 6. Imaging of Currarino syndrome. 7. Imaging of Vacterl syndrome.Summary: ARM are a group of complex anatomical alterations characterized by an abnormal separation of genitourinary system from hindgut. The major teachingpoints of this pictorial essay are to show: - The normal anatomy of the pelvis floor and the sphincter muscle complex in 3T-MRI. - Anatomic schemas of thedifferent types of ARM in boys and girls. - Imaging findings of a wide spectrum of ARM using a multimodality approach. including colostogramm, voidingcystourethrogramm and MRI of the pelvis.
Resumo:
Recent advances in signal analysis have engendered EEG with the status of a true brain mapping and brain imaging method capable of providing spatio-temporal information regarding brain (dys)function. Because of the increasing interest in the temporal dynamics of brain networks, and because of the straightforward compatibility of the EEG with other brain imaging techniques, EEG is increasingly used in the neuroimaging community. However, the full capability of EEG is highly underestimated. Many combined EEG-fMRI studies use the EEG only as a spike-counter or an oscilloscope. Many cognitive and clinical EEG studies use the EEG still in its traditional way and analyze grapho-elements at certain electrodes and latencies. We here show that this way of using the EEG is not only dangerous because it leads to misinterpretations, but it is also largely ignoring the spatial aspects of the signals. In fact, EEG primarily measures the electric potential field at the scalp surface in the same way as MEG measures the magnetic field. By properly sampling and correctly analyzing this electric field, EEG can provide reliable information about the neuronal activity in the brain and the temporal dynamics of this activity in the millisecond range. This review explains some of these analysis methods and illustrates their potential in clinical and experimental applications.
Resumo:
The primary goal of this study was to design a fluorescent E-selectin-targeted iodine-containing liposome for specific E-selectin imaging with the use of micro-CT. The secondary goal was to correlate the results of micro-CT imaging with other imaging techniques with cellular resolution, i.e., confocal and intravital microscopy. E-selectin-targeted liposomes were tested on endothelial cells in culture and in vivo in HT-29 tumor-bearing mice (n = 12). The liposomes contained iodine (as micro-CT contrast medium) and fluorophore (as optical contrast medium) for confocal and intravital microscopy. Optical imaging methods were used to confirm at the cellular level, the observations made with micro-CT. An ischemia-reperfusion model was used to trigger neovessel formation for intravital imaging. The E-selectin-targeted liposomes were avidly taken up by activated endothelial cells, whereas nontargeted liposomes were not. Direct binding of the E-selectin-targeted liposomes was proved by intravital microscopy, where bright spots clearly appeared on the activated vessels. Micro-CT imaging also demonstrated accumulation of the targeted lipsomes into subcutaneous tumor by an increase of 32 +/- 8 HU. Hence, internalization by activated endothelial cells was rapid and mediated by E-selectin. We conclude that micro-CT associated with specific molecular contrast agent is able to detect specific molecular markers on activated vessel walls in vivo.
Resumo:
BACKGROUND: Diffusion-weighted magnetic resonance imaging (MRI) is increasingly being used for assessing the treatment succes in oncology, but the real clinical value needs to evaluated by comparison with other, already established, metabolic imaging techniques. PURPOSE: To prospectively evaluate the clinical potential of diffusion-weighted MRI with apparent diffusion coefficient (ADC) mapping for gastrointestinal stromal tumor (GIST) response to targeted therapy compared with 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). MATERIAL AND METHODS: Eight patients (mean age, 56 ± 11 years) known to have metastatic GIST underwent 18F-FDG PET/CT and MRI (T1Gd, DWI [b = 50,300,600], ADC mapping) simultaneously, before and after change in targeted therapy. MR and PET/CT examinations were first analyzed blindly. Second, PET/CT images were co-registered with T1Gd-MR images for lesion detection. Only 18F-FDG avid lesions were considered. Maximum standardized uptake value (SUVmax) and the corresponding minimum ADCmin were measured for the six largest lesions per patient, if any, on baseline and follow-up examinations. The relationship between changes in SUVmax and ADCmin was analyzed (Spearman's correlation). RESULTS: Twenty-four metastases (12 hepatic, 12 extra-hepatic) were compared on PET/CT and MR images. SUVmax decreased from 7.7 ± 8.1 g/mL to 5.5 ± 5.4 g/mL (P = 0.20), while ADCmin increased from 1.2 ± 0.3 × 10(-3)mm(2)/s to 1.5 ± 0.3 × 10(-3)mm(2)/s (P = 0.0002). There was a significant association between changes in SUVmax and ADCmin (rho = - 0.62, P = 0.0014), but not between changes in lesions size (P = 0.40). CONCLUSION: Changes in ADCmin correlated with the response of 18F-FDG avid GIST to targeted therapy. Thus, diffusion-weighted MRI may represent a radiation-free alternative for follow-up treatment for metastatic GIST patients.
Resumo:
Congenital cardiopathies in adults are a rare clinical entity in the cardiology consultations. Advances in imaging techniques allow the fortuitous diagnosis of mild forms of these congenital abnormalities. We describe a case of an asymptomatic 41-year-old man, with a medical history of recurrent pneumonia during childhood and an established diagnosis of scimitar syndrome by computed tomography.
Resumo:
PURPOSE: Most existing methods for accelerated parallel imaging in MRI require additional data, which are used to derive information about the sensitivity profile of each radiofrequency (RF) channel. In this work, a method is presented to avoid the acquisition of separate coil calibration data for accelerated Cartesian trajectories. METHODS: Quadratic phase is imparted to the image to spread the signals in k-space (aka phase scrambling). By rewriting the Fourier transform as a convolution operation, a window can be introduced to the convolved chirp function, allowing a low-resolution image to be reconstructed from phase-scrambled data without prominent aliasing. This image (for each RF channel) can be used to derive coil sensitivities to drive existing parallel imaging techniques. As a proof of concept, the quadratic phase was applied by introducing an offset to the x(2) - y(2) shim and the data were reconstructed using adapted versions of the image space-based sensitivity encoding and GeneRalized Autocalibrating Partially Parallel Acquisitions algorithms. RESULTS: The method is demonstrated in a phantom (1 × 2, 1 × 3, and 2 × 2 acceleration) and in vivo (2 × 2 acceleration) using a 3D gradient echo acquisition. CONCLUSION: Phase scrambling can be used to perform parallel imaging acceleration without acquisition of separate coil calibration data, demonstrated here for a 3D-Cartesian trajectory. Further research is required to prove the applicability to other 2D and 3D sampling schemes. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
The use of self-calibrating techniques in parallel magnetic resonance imaging eliminates the need for coil sensitivity calibration scans and avoids potential mismatches between calibration scans and subsequent accelerated acquisitions (e.g., as a result of patient motion). Most examples of self-calibrating Cartesian parallel imaging techniques have required the use of modified k-space trajectories that are densely sampled at the center and more sparsely sampled in the periphery. However, spiral and radial trajectories offer inherent self-calibrating characteristics because of their densely sampled center. At no additional cost in acquisition time and with no modification in scanning protocols, in vivo coil sensitivity maps may be extracted from the densely sampled central region of k-space. This work demonstrates the feasibility of self-calibrated spiral and radial parallel imaging using a previously described iterative non-Cartesian sensitivity encoding algorithm.
Resumo:
BACKGROUND: The technical developments of imaging methods over the last 2 decades are changing our knowledge of perinatal oncology. Fetal ultrasound is usually the first imaging method used and thus constitutes the reference prenatal study, but MRI seems to be an excellent complementary method for evaluating the fetus. The widespread use of both techniques has increased the diagnosis rates of congenital tumors. During pregnancy and after birth, an accurate knowledge of the possibilities and limits of the different imaging techniques available would improve the information obtainable, thus helping the medical team to make the most appropriate decisions about therapy and to inform the family about the prognosis. CONCLUSION: In this review article, we describe the main congenital neoplasms, their prognosis and their imaging characteristics with the different pre- and postnatal imaging methods available.
Resumo:
Cross-sectional imaging techniques such as magnetic resonance imaging and ultrasound are becoming essential tools not only for making an early diagnosis of rheumatoid arthritis, but also to help clarify the prognosis of the disease and better assess the response to various therapies. This article summarises the recommendations established in 2013 by the European League Against Rheumatism on the role of imaging in the diagnosis and follow-up of rheumatoid arthritis, while adding comments and emphasising on our Swiss experience with the use of ultrasound.
Resumo:
Background: EEG is the cornerstone of epilepsy diagnostics and mandatory to determine the underlying epilepsy syndrome (e.g. focal vs idiopathic generalized). However, its potential as imaging tool is still underrecognized. In the present study, we aim to determine the prerequisites of maximal benefit of electric source imaging (ESI) to localize the irritative zone in patients with focal epilepsy. Methods: 150 patients suffering from focal epilepsy and with minimum 1 year post-operative follow-up were studied prospectively by reviewers blinded to the underlying diagnosis and outcome. We evaluated the influence of two important factors on sensitivity and specificity of ESI: the number of electrodes (low resolution, LR-ESI: \30 vs. high resolution, HR-ESI: 128-256 electrodes), and the use of individual MRI (i-MRI) vs. template MRI (t-MRI) as head model.Results: ESI had a sensitivity of 85% and a specificity of 87% when HR-ESI with i-MRI was used. Using LR-ESI, sensitivity decreased to 68%, or even 57% when only t-MRI was available. The sensitivity of HR-ESI/i-MRI compared favorably with those of MRI (76%), PET (69%) and ictal/interictal SPECT (64%).Interpretation: This study on a large patient group shows excellent sensitivity and specificity of ESI if 128 EEG channels or more are used for ESI and if the results are co-registered to the patient's individual MRI. Localization precision is as high as or even higher than established brain imaging techniques, providing excellent costeffectiveness in epilepsy evaluation. HR-ESI appears to be a valuable additional imaging tool, given that larger electrode arrays are easily and rapidly applied with modern EEG equipment and that structural MRI is nearly always available for these patients.
Resumo:
Multiple complex procedures involving the bladder have been developed by surgeons in both children and adults, with their own advantages and drawbacks. A greater knowledge of the anatomic changes induced by each category of procedure is mandatory in the follow-up of patients and detection of early and late postoperative complications. A retrospective review of 50 pediatric and adult patients referred or treated in our institution is presented. The combined use of plain films, IVP, MCUG, US, Doppler US, CT, 3DCT and MRI is described. The imaging features are compared with surgical and anatomopathological findings. The purpose of this pictorial essay is to present a wide spectrum of diagnostic imaging findings in children and adult patients with operated bladder. The imaging features of surgical procedures with preserved, partially replaced and totally replaced bladder are described, with emphasis on a systematic multimodality approach. Learning objectives: 1) To provide an in-depth review of bladder surgical procedures with their indications, anatomopathological and imaging features. 2) To describe optimal multimodality imaging techniques for evaluating the operated bladder.
Resumo:
The purpose of this study was to evaluate a free-breathing three-dimensional (3D) dual inversion-recovery (DIR) segmented k-space gradient-echo (turbo field echo [TFE]) imaging sequence at 3T for the quantification of aortic vessel wall dimensions. The effect of respiratory motion suppression on image quality was tested. Furthermore, the reproducibility of the aortic vessel wall measurements was investigated. Seven healthy subjects underwent 3D DIR TFE imaging of the aortic vessel wall with and without respiratory navigator. Subsequently, this sequence with respiratory navigator was performed twice in 10 healthy subjects to test its reproducibility. The signal-to-noise (SNR), contrast-to-noise ratio (CNR), vessel wall sharpness, and vessel wall volume (VWV) were assessed. Data were compared using the paired t-test, and the reproducibility of VWV measurements was evaluated using intraclass correlation coefficients (ICCs). SNR, CNR, and vessel wall sharpness were superior in scans performed with respiratory navigator compared to scans performed without. The ICCs concerning intraobserver, interobserver, and interscan reproducibility were excellent (0.99, 0.94, and 0.95, respectively). In conclusion, respiratory motion suppression substantially improves image quality of 3D DIR TFE imaging of the aortic vessel wall at 3T. Furthermore, this optimized technique with respiratory motion suppression enables assessment of aortic vessel wall dimensions with high reproducibility.
Resumo:
Ischaemic stroke and myocardial infarction often result from the sudden rupture of an atherosclerotic plaque. The subsequent arterial thrombosis occluding the vessel lumen has been widely indicated as the crucial acute event causing peripheral tissue ischaemia. A complex cross-talk between systemic and intraplaque inflammatory mediators has been shown to regulate maturation, remodeling and final rupture of an atherosclerotic plaque. Matrix metalloproteinases (MMPs) are proteolytic enzymes (released by several cell subsets within atherosclerotic plaques), which favour atherogenesis and increase plaque vulnerability. Thus, the assessment of intraplaque levels and activity of MMP might be of pivotal relevance in the evaluation of the risk of rupture. New imaging approaches, focused on the visualisation of inflammation in the vessel wall and plaque, may emerge as tools for individualised risk assessment and prevention of events. In this review, we summarize experimental findings of the currently available invasive and noninvasive imaging techniques, used to detect the presence and activity of MMPs in atherosclerotic plaques.