844 resultados para Efluentes liquidos
Resumo:
The contribution of the industrial activities to the environmental contamination phenomena is evident. Great efforts are dedicated to the establishment of methodologies which permits an adequate treatment of the produced effluents, as a manner of minimizing the environmental impact of these wastes. The methodologies based on photocatalytic processes are very promise alternatives, because permits degradation of a great number of chemical substances of high toxic potential, without the use of other chemicals. The present work is an overview about the principal environmental aspects related with the paper and cellulose industry and the main alternatives employed for the reduction of environmental impact produced for its residues. The principal results of the photocatalytic treatment of this kind of effluents using metallic semiconductors is also showed.
Resumo:
Metabolic rates were determined by dissolved oxigen changes in light and dark bottles, filled with river water and after input of mixed effluent concentrations. In another experiment, dissolved inorganic nutrients, chlorophyll-alpha and other physico-chemical parameters were analyzed. Water column showed higher decomposition than production rates. Waste inputs increased primary production rates, but in higher concentrations forced the system to heterotrophy. The natural richness of macrophytes and macroalgae could be limiting the phytoplanktonic production by phosphorus assimilation. Observation of the nitrogenated inorganic nutrients suggest that the natural pelagic system is directed to nitrification. Mixed waste input inverted this trend, toward denitrification.
Resumo:
Textile effluents, when not correctly treated, cause a high impact to the environment. The main recalcitrant compounds present in textile effluent are represented by the synthetic dyes, used during the fibber dying process. Among others, the azo dyes are considered the most harmful due to its mutagenic and carcinogenic character. In the present work we reported a revision study on the new tendencies for remediation of textile effluents, mainly to degrade the recalcitrant compounds. For this purpose, chemical, physical, photochemical, biological and combined processes were investigated.
Resumo:
The abatement of recalcitrant lignin macromolecules from effluents of pulp and paper industry was investigated by combined process. Flocculation and coagulation with aluminum sulfate and natural polyelectrolytes extracted from cactus Cereus peruvianus were used in the first step. After separation of solid residues by filtration, the photochemical methods using TiO2 as catalyst were employed for photocatalytic degradation of lignin compounds from solution. The abatement of lignin compounds after flocculation and coagulation was 46%, and after the overall process, the pollutants reduction observed were 66%. The remaining organic compounds may be removed by any biological treatment.
Resumo:
This review had as aim the bibliography research for the use of aluminosilicates to remove heavy metals from wastewaters. Advanced studies based on parameters that have influence for removal of heavy metals as pH, metal concentration, effect of ligants and removal capacity of zeolites and clays, were reported. These studies demonstrate that aluminosilicates can be successfully used for the removal of heavy metals under the optimized conditions.
Resumo:
Cation exchange capabilities of a Brazilian natural zeolite, identified as scolecite, were evaluated for application in wastewater control. We investigated the process of sorption of chromium(III), nickel(II), cadmium(II) and manganese(II) in synthetic aqueous effluents, including adsorption isotherms of single-metal solutions. The natural zeolite showed the ability to take up the tested heavy metals in the order Cr(III) > Cd(II) > Ni(II) > Mn(II), and this could be related to the valence and the hydration radius of the metal cations. The influence of temperature (25, 40 and 60 ºC) and initial pH value (from 4 to 6) was also evaluated. It was found that the adsorption increased substantially when the temperature was raised to 60 ºC and that maximum adsorption capacity was observed at pH 6. These results demonstrate that scolecite can be used for removal of heavy metals from aqueous effluents, under optimized conditions.
Resumo:
A large variety of organic and inorganic compounds may be found in wastewater which can contribute to environmental contamination. Oxidation processes with ozone (O3; O3/UV; O3/H2O2; O3/TiO2; O3/Mn+2) and the use of ozone in the pre- or post-treatment of wastewater combined with biological processes has been extensively studied for the treatment of effluents. The aim of this work was to evaluate the potential of the ozonation process in the treatment of several industrial wastewaters, namely effluents from paper mills, and textile, whey (dairy industry), pharmaceutic sand pesticides plants.
Resumo:
The indigo blue dye is widely used in the textile industry. When discarded, besides polluting the environment, it affects the appearance and transparency of aquatic bodies, causing damage to flora and fauna. The removal of this dye from industrial effluents is difficult due to its resistance towards degradation. This work proposes the recovery of indigo blue by electroflocculation, as a subsidy for the treatment of effluents from the jeans industry.
Resumo:
Removal of hydrocarbons from aqueous effluents using biosorbents was investigated. The effluent was simulated by a dispersion of gasoline (simple hydrocarbons) in water. Corn-cob, wood powder, coconut mesocarp and sugar-cane bagasse were used as adsorbents and their performance verified by means of batch experiments performed in an agitated vessel. The influence of input variables such as hydrocarbon concentration, mass of biomass and agitation level on the adsorbents' capacity was studied by means of factorial design. The results indicated that, among the materials studied, coconut mesocarp and sugar-cane bagasse can be considered promising biomasses for treating aqueous effluents contaminated by hydrocarbons.
Resumo:
Tannery effluents are very dangerous for the environment since they contain large amounts of dangerous and biorecalcitrant contaminants (organic matter and Cr(VI)). This paper reports the efficiency of heterogeneous photocatalysis, based on the application of solar and artificial radiation, furnished by UV lamps, using TiO2 fixed on a flat plate, in the treatment of synthetic effluents. The results of COD and Cr(VI) demonstrate that the use of solar radiation is the most efficient way to perform the photocatalytic treatment of these effluents since a minimum removal of 62 and 61% was observed for Cr(VI) and organic matter, respectively.
Resumo:
The employment of local soils for extraction of metallic elements was evaluated through batch tests to treat wastewaters generated in a petroleum refinery plant in southern Brazil. Clay and organic carbon content and clay mineralogy provide these soils, in principle, with moderate metal retention capacity. The following retention order was established: Cr3+ > Pb2+ > Cu2+ > Hg2+ > Cd2+, with total amount of metals retained varying from 36 to 65 meq kg-1. The results show the high efficiency of local soils for extracting metals from liquid effluents through sorption and precipitation processes under acid pH conditions.
Resumo:
In an effort to minimize the impact on the environment, removal of pollutants, such as phenolic compounds, from the industrial wastewater has great importance nowadays because of the high toxicity and low biodegradability of these compounds. This work discusses the different methods to remove these compounds from industrial wastewater, showing their advantages and disadvantages. Advanced Oxidation Process (AOPs) are presented as a promising technology for the treatment of wastewater containing phenolic compounds. Among the AOPs, photolysis, photocatalysis and the processes based on hydrogen peroxide and on ozone are discussed with emphasis on the combined processes and the oxidation mechanisms.
Resumo:
Red mud is the principal residue of the alumina (Al2O3) industry. Generated during the Bayer process, it is characterized by strong alkalinity and ion exchange. Iron oxides are the principal component (30 to 60%). Annually millions of tons of red mud are generated in the world. Red mud disposal is responsible for a large part of the cost of alumina production. On the other hand, textile industry wastewaters containing dyes have a great impact on the environment and on human health. In this paper the possibility of applying red mud for the removal of dyes was investigated by two processes: adsorption and degradation by the Fenton reagent.
Resumo:
The aim of this work is to evaluate the use of natural zeolites to remove the NH4+ that remains in effluents from swine facilities which were submitted to physico-chemical and biological treatments. Experiments were made in batch made adding 5% (w/w) of adsorbent (0.6-1.3 and 3.0-8.0 mm) to synthetic and real swine facilities effluents. The results show that ammonium removal is influenced by adsorbent particle size and the presence of other ions in the effluent. The adsorption equilibrium was described by Langmuir as well as Freundlich isotherms and the kinetic data fitted well a pseudo-second order model.
Resumo:
This work aimed to carry out an environmental monitoring in sabino narrow river (affluent of Tibiri Basin, in São Luís - MA, Brazil), in order to verify the main environmental impacts caused by effluent residues from Ribeira landfill. Chemical analysis and bibliographic and cartographic researches on this ecosystem were also carried out. In addition, heavy metals, such as Hg, Pb and Zn, were investigated in water samples by ICP-MS technique. It was observed that the contents of such heavy metals were above the tolerance limits established by the Brazilian legislation, showing a strong impact level on the evaluated ecosystem.