970 resultados para Efflux Pump


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: There are concerns that the use of enrofloxacin in livestock production may contribute to the development of fluoroquinolone resistance in zoonotic bacteria. The objective of our study was to investigate the effect of a single 5 day enrofloxacin treatment on Salmonella enterica serotype Typhimurium DT104 in a pig model. Results: Our results showed that a single treatment failed to eradicate S. Typhimurium DT104, which continued to be isolated up to 35 days after treatment. We also provide evidence that treatment positively selects for S. Typhimurium DT104 strains that are already nalidixic acid resistant (gyrA Asn-87) or cyclohexane resistant, the latter being indicative of an up-regulated efflux pump. Emergence of fluoroquinolone resistance was not detected during treatment or post-treatment in any of the Salmonella strains monitored. However, the effect of enrofloxacin on the nalidixic acid-resistant and cyclohexane-resistant S. Typhimurium DT104 outlasted the current withdrawal time of 10 days for Baytril (commercial veterinary formulation of enrofloxacin). Conclusions: In conclusion, our study has provided direct evidence that enrofloxacin-treated pigs could be entering abattoirs with higher numbers of quinolone-resistant zoonotic bacteria than untreated pigs, increasing the risk of these entering the food chain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An efflux system, CmeABC, in Campylobacter jejuni was previously described, and a second efflux system, CmeDEF, has now been identified. The substrates of CmeDEF include ampicillin, ethidium bromide, acridine, sodium dodecyl sulfate (SDS), deoxycholate, triclosan, and cetrimide, but not ciprofloxacin or erythromycin. C. jejuni NCTC11168 and two efflux pump knockout strains, cmeB::Kan(r) and cmeF::Kan(r), were exposed to 0.5 to 1 mu g of ciprofloxacin/ml in agar plates. All mutants arising from NCTC11168 were resistant to ciprofloxacin but not to other agents and contained a mutation resulting in the replacement of threonine 86 with isoleucine in the quinolone resistance-determining region of GyrA. Mutants with two distinct phenotypes were selected from the efflux pump knockout strains. Mutants with the first phenotype were resistant to ciprofloxacin only and had the same substitution within GyrA as the NCTC11168-derived mutants. Irrespective of the parent strain, mutants with the second phenotype were resistant to ciprofloxacin, chloramphenicol, tetracycline, ethidium bromide, acridine orange, and SDS and had no mutation in gyrA. These mutants expressed levels of the efflux pump genes cmeB and cmeF and the major outer membrane protein gene porA similar to those expressed by the respective parent strains. No mutations were detected in cmeF or cmeB. Accumulation assays revealed that the mutants accumulated lower concentrations of drug. These data suggest the involvement of a non-CmeB or -CmeF efflux pump or reduced uptake conferring multiple-antibiotic resistance, which can be selected after exposure to a fluoroquinolone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: The physiological response of Salmonella enterica serovar Typhimurium to fluoroquinolone antibiotics was investigated using proteomic methods. Methods: Proteomes were prepared from strain SL1344 following treatment of broth cultures with ciprofloxacin (0.03 and 0.008 mg/L; 2x and 0.5x MIC) and enrofloxacin (0.03 mg/L) and from a multiple antibiotic resistant (MAR) mutant. Protein expression was determined by two-dimensional HPLC-MSn and also after exposure to ciprofloxacin by two-dimensional gel electrophoresis (2D-GE). Results: The number of proteins (mean +/- SD) detected by 2D-GE derived from control cultures of the wild-type strain was significantly (P < 0.05) reduced from 296 +/- 77 to 153 +/- 36 following treatment with ciprofloxacin (0.03 mg/L). Raised expression (P < 0.05) of 17 proteins was also detected, and increases of up to 8-fold (P < 0.0001) were observed for subunits of F1F0-ATP synthase, TolC and Imp. Analysis by two-dimensional HPLC-MSn provided higher proteome coverage with 787 +/- 50 proteins detected, which was reduced (P < 0.005) to 560 +/- 14 by ciprofloxacin (0.03 mg/L). Increased expression of 43 proteins was observed which included those detected by 2D-GE and additionally the efflux pump protein AcrB. The basal expression of the AcrAB/TolC efflux pump was elevated in the MAR mutant compared with the untreated wild-type and augmented following treatment with ciprofloxacin (0.03 mg/L). F1F0-ATP synthase and Imp were only elevated in the mutant when treated with ciprofloxacin. Conclusions: These studies suggest that increased expression of AcrAB/TolC was associated with resistance while other increases, such as in F1F0-ATP synthase and Imp, were a response to fluoroquinolone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: To determine the contribution of the AcrAB efflux system to cyclohexane tolerance in Salmonella enterica. Methods: The expression of the efflux pump gene, acrB, and regulators marA and soxS from 46 isolates of S. enterica of 14 different serovars was determined by comparative RT-PCR and denaturing HPLC analysis. Results: Twenty-one of the 46 isolates were cyclohexane tolerant, a phenotype associated with multiple antibiotic resistance (MAR) and overexpression of efflux pumps. Of the cyclohexane-tolerant isolates 81% were MAR, whereas only 44% of the cyclohexane-susceptible isolates were MAR, confirming the association between cyclohexane tolerance and MAR. However, there was no correlation between cyclohexane tolerance or MAR and overexpression of acrB, soxS or marA. Conclusions: These data suggest that cyclohexane tolerance in S. enterica can be mediated by an acrB-independent mechanism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microbial biofilms are responsible for a variety of microbial infections in different parts of the body, such as urinary tract infections, catheter infections, middle-ear infections, gingivitis, caries, periodontitis, orthopedic implants, and so on. The microbial biofilm cells have properties and gene expression patterns distinct from planktonic cells, including phenotypic variations in enzymic activity, cell wall composition and surface structure, which increase the resistance to antibiotics and other antimicrobial treatments. There is consequently an urgent need for new approaches to attack biofilm-associated microorganisms, and antimicrobial photodynamic therapy (aPDT) may be a promising candidate. aPDT involves the combination of a nontoxic dye and low-intensity visible light which, in the presence of oxygen, produces cytotoxic reactive oxygen species. It has been demonstrated that many biofilms are susceptible to aPDT, particularly in dental disease. This review will focus on aspects of aPDT that are designed to increase efficiency against biofilms modalities to enhance penetration of photosensitizer into biofilm, and a combination of aPDT with biofilm-disrupting agents. © 2013 Informa UK Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbapenem resistance amongst Acinetobacter spp. has been increasing in the last decade. This study evaluated the outer membrane protein (OMP) profile and production of carbapenemases in 50 carbapenem-resistant Acinetobacter spp. isolates from bloodstream infections. Isolates were identified by API20NE. Minimum inhibitory concentrations (MICs) for carbapenems were determined by broth microdilution. Carbapenemases were studied by phenotypic tests, detection of their encoding gene by polymerase chain reaction (PCR) amplification, and imipenem hydrolysis. Nucleotide sequencing confirming the enzyme gene type was performed using MegaBACE 1000. The presence of OMPs was studied by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and PCR. Molecular typing was performed using pulsed-field gel electrophoresis (PFGE). All isolates were resistant to carbapenems. Moreover, 98% of the isolates were positive for the gene encoding the enzyme OXA-51-like, 18% were positive for OXA-23-like (only one isolate did not show the presence of the insertion sequence ISAba1 adjacent to this gene) and 76% were positive for OXA-143 enzyme. Five isolates (10%) showed the presence of the IMP-1 gene. Imipenem hydrolysing activity was detected in only three strains containing carbapenemase genes, comprising two isolates containing the bla(IMP) gene and one containing the bla(OXA-51/OXA-23-like) gene. The OMP of 43 kDa was altered in 17 of 25 strains studied, and this alteration was associated with a high meropenem MIC (256 mu g/mL) in 5 of 7 strains without 43 kDa OMP. On the other hand, decreased OMP 33-36 kDa was found in five strains. The high prevalence of OXA-143 and alteration of OMPs might have been associated with a high level of carbapenem resistance. (C) 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVES: We investigated whether Acinetobacter baumannii isolates of veterinary origin shared common molecular characteristics with those described in humans. METHODS: Nineteen A. baumannii isolates collected in pets and horses were analysed. Clonality was studied using repetitive extragenic palindromic PCR (rep-PCR) and multilocus sequence typing (MLST). PCR and DNA sequencing for various beta-lactamase, aminoglycoside-modifying enzyme, gyrA and parC, ISAba1 and IS1133, adeR and adeS of the AdeABC efflux pump, carO porin and class 1/2/3 integron genes were performed. RESULTS: Two main clones [A (n = 8) and B (n = 9)] were observed by rep-PCR. MLST indicated that clone A contained isolates of sequence type (ST) ST12 (international clone II) and clone B contained isolates of ST15 (international clone I). Two isolates of ST10 and ST20 were also noted. Seventeen isolates were resistant to gentamicin, 12 to ciprofloxacin and 3 to carbapenems. Isolates of ST12 carried bla(OXA-66), bla(ADC-25), bla(TEM-1), aacC2 and IS1133. Strains of ST15 possessed bla(OXA-69), bla(ADC-11), bla(TEM-1) and a class 1 integron carrying aacC1 and aadA1. ISAba1 was found upstream of bla(ADC) (one ST10 and one ST12) and/or bla(OXA-66) (seven ST12). Twelve isolates of different STs contained the substitutions Ser83Leu in GyrA and Ser80Leu or Glu84Lys in ParC. Significant disruptions of CarO porin and overexpressed efflux pumps were not observed. The majority of infections were hospital acquired and in animals with predisposing conditions for infection. CONCLUSIONS: STs and the molecular background of resistance observed in our collection have been frequently described in A. baumannii detected in human patients. Animals should be considered as a potential reservoir of multidrug-resistant A. baumannii.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

P-glycoprotein (p-gp) is a transmembrane protein functioning as a drug-efflux pump in the intestinal epithelium. Human patients with inflammatory bowel disease (IBD) who fail to respond to treatment with steroids express high levels of p-gp in lamina propria lymphocytes. The purpose of this study was to investigate p-gp expression in duodenal biopsy samples of dogs with chronic enteropathies and to evaluate the expression of p-gp after treatment with a known inducer of p-gp (prednisolone). Duodenal biopsy samples from 48 dogs were evaluated immunohistochemically with the mouse monoclonal antibody C219 for expression of p-gp in lamina propria lymphocytes. Biopsy samples were available from 15 dogs after treatment with prednisolone and 16 dogs after dietary therapy alone ("elimination diet"). Treatment with prednisolone resulted in an increase in p-gp expression (P=0.005). In contrast, dietary treatment alone produced no significant change in p-gp expression (P=0.59). A low p-gp score before initiation of steroid treatment was significantly associated with a positive response to treatment (P=0.01). These results indicate that lamina propria lymphocyte expression of p-gp is upregulated after prednisolone treatment in dogs with IBD, and that mucosal expression of p-gp may be of value in predicting the response to therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Moraxella catarrhalis, a major nasopharyngeal pathogen of the human respiratory tract, is exposed to rapid downshifts of environmental temperature when humans breathe cold air. The prevalence of pharyngeal colonization and respiratory tract infections caused by M. catarrhalis is greatest in winter. We investigated how M. catarrhalis uses the physiologic exposure to cold air to regulate pivotal survival systems that may contribute to M. catarrhalis virulence. RESULTS In this study we used the RNA-seq techniques to quantitatively catalogue the transcriptome of M. catarrhalis exposed to a 26 °C cold shock or to continuous growth at 37 °C. Validation of RNA-seq data using quantitative RT-PCR analysis demonstrated the RNA-seq results to be highly reliable. We observed that a 26 °C cold shock induces the expression of genes that in other bacteria have been related to virulence a strong induction was observed for genes involved in high affinity phosphate transport and iron acquisition, indicating that M. catarrhalis makes a better use of both phosphate and iron resources after exposure to cold shock. We detected the induction of genes involved in nitrogen metabolism, as well as several outer membrane proteins, including ompA, m35-like porin and multidrug efflux pump (acrAB) indicating that M. catarrhalis remodels its membrane components in response to downshift of temperature. Furthermore, we demonstrate that a 26 °C cold shock enhances the induction of genes encoding the type IV pili that are essential for natural transformation, and increases the genetic competence of M. catarrhalis, which may facilitate the rapid spread and acquisition of novel virulence-associated genes. CONCLUSION Cold shock at a physiologically relevant temperature of 26 °C induces in M. catarrhalis a complex of adaptive mechanisms that could convey novel pathogenic functions and may contribute to enhanced colonization and virulence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Secondary metabolites are produced by numerous organisms and can either be benign to humans or harmful. Genes involved in the synthesis and transport of these secondary metabolites are frequently found in gene clusters, which are often located in subtelomeric regions of the chromosome. These clusters are often coordinately regulated, being almost exclusively dependent on transcription factors that are located within the clusters themselves. Secondary metabolites are also regulated by a variety of factors, including nutritional factors, environmental factors and developmental processes. Gliotoxin, which is produced by a variety of Aspergillus species, Trichoderma species, and Penicillium species, exhibits immunosuppressive properties and has therefore been the subject of research for many laboratories. There have been a few proteins shown to regulate the gliotoxin cluster, most notably GliZ, a Zn2Cys6 binuclear finger transcription factor that lies within the cluster, and LaeA, a putative methyltransferase that globally regulates secondary metabolism clusters within numerous fungal organisms, although no study has demonstrated the direct binding of any protein to a promoter region in the gliotoxin cluster. I report here two novel proteins, GipA, a C2H2 transcription factor and GipB, a hybrid sensor kinase, which are involved in regulating the gliotoxin biosynthetic cluster. GipA plays an important role in gliotoxin production, as high-copy expression of gipA induces gliotoxin biosynthesis and loss of gipA reduces gliotoxin biosynthesis by 50%. GipB is also involved in regulating gliotoxin production, as high-copy expression of gipB induces gliotoxin biosynthesis, but only during certain stages of asexual development. Furthermore, loss of gipB reduces gliotoxin biosynthesis by 10%. Based on data obtained from this project, I propose a model for the regulation of gliA, the efflux pump of the gliotoxin cluster, which involves GipB signaling through both GliZ and GipA. I propose that GliZ and GipA are interdependent, as mutation of the GipA DNA binding site in the gliA promoter negatively affects both GliZ-mediated and GipA-mediated induction of gliA. This is further supported by the fact that GliZ cannot fully induce gliA in the absence of GipA and vice versa. This is the first time that anyone has shown evidence of a protein directly binding to the gliotoxin cluster. Even though biosynthetic clusters are often coordinately regulated, my model raises the possibility that gliA is independently regulated, as the layout of the binding site in the gliA promoter is not present upstream of any other genes in the gliotoxin cluster, except for gliZ.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mechanisms of multidrug resistance (MDR) were studied in two independent MDR sublines (AdR1.2 and SRA1.2) derived from the established human colon carcinoma cell line LoVo. AdR1.2 was developed by long-term continuous exposure of the cells to adriamycin (AdR) in stepwise increments of concentration, while SRA1.2 was selected by repetitive pulse treatments with AdR at a single concentration. In this dissertation, the hypothesis that the mechanism of drug resistance in SRA1.2 is different than that in AdR1.2 is tested. While SRA1.2 demonstrated similar biological characteristics when compared to the parental LoVo, AdR1.2 exhibited remarkable alterations in biological properties. The resistance phenotype of AdR1.2 was reversible when the cells were grown in the drug-free medium whereas SRA1.2 maintained its resistance for at least 10 months under similar conditions. Km and Vmax of carrier-mediated facilitated diffusion AdR transport were similar among the three lines. However, both resistant sublines exhibited an energy-dependent drug efflux. AdR1.2 appeared to possess an activated efflux pump, and a decreased nucleus-binding of AdR, whereas SRA1.2 showed merely a lower affinity in binding of AdR to the nuclei. Southern blot analysis showed no amplification of the MDR1 gene in either of the two resistant subclones. However, Western blot analysis using the C219 monoclonal antibody against P170 glycoprotein detected a Mr 150-kDa plasma protein (P150) in AdR1.2 but not in SRA1.2 or in the parental LoVo. In vitro phosphorylation studies revealed that P150 was a phosphoprotein; its phosphorylation was Mg$\sp{2+}$-dependent and could be enhanced by verapamil, an agent capable of increasing intracellular AdR accumulation in AdR1.2 cells. The phosphorylation studies also revealed elevated phosphorylation of a Mr 66-kDa plasma membrane protein that was detectable in the AdR1.2 revertant and in AdR1.2 when verapamil was present, suggesting that hyperphosphorylation of the Mr 66-kDa protein may be related to the reversal of MDR. SDS-PAGE of the plasma membrane protein demonstrated overproduction of a Mr 130-kDa, MDR-related protein in both the resistant sublines. The Mr 130-kDa, MDR-related protein in both the resistant sublines. The Mr 130-kDa protein was not immunoreactive with C219, but its absence in the AdR1.2 revertant and the parental LoVo suggests that it is an MDR-related plasma membrane protein. In conclusion, the results from this study support the author's hypothesis that the mechanisms responsible for "Acquired" and "Natural" MDR are not identical. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The MDR1 P-glycoprotein (Pgp), a member of the ATP-binding cassette family of transporters, is a transmembrane ATPase efflux pump for various lipophilic compounds, including many anti-cancer drugs. mAb UIC2, reactive with the extracellular moiety of Pgp, inhibits Pgp-mediated efflux. UIC2 reactivity with Pgp was increased by the addition of several Pgp-transported compounds or ATP-depleting agents, and by mutational inactivation of both nucleotide-binding domains (NBDs) of Pgp. UIC2 binding to Pgp mutated in both NBDs was unaffected in the presence of Pgp transport substrates or in ATP-depleted cells, whereas the reactivities of the wild-type Pgp and Pgps mutated in a single NBD were increased by these treatments to the level of the double mutant. These results indicate the existence of different Pgp conformations associated with different stages of transport-associated ATP hydrolysis and suggest trapping in a transient conformation as a mechanism for antibody-mediated inhibition of Pgp.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The P-glycoprotein (Pgp) efflux pump can influence the hepatocellular concentration of xenobiotics that are modulators and substrates of cytochrome P4503A (CYP3A). We tested the hypothesis that Pgp is a determinant of drug-inducible expression of CYP3A. The magnitude of CYP3A induction by rifampicin was compared in the human parental colon carcinoma cell line LS 180/WT (wild type) and in two derivative clones overexpressing the human multidrug resistance gene MDR1 (also designated PGY1) because of either drug selection (LS 180/ADR) or transfection with MDRI cDNA (LS 180/MDR). In both MDR1 cDNA-overexpressing clones, rifampicin induction of CYP3A mRNA and protein was decreased and required greater rifampicin concentrations compared with parental cells. The role of Pgp in regulation of CYP3A expression in vivo was analyzed in mice carrying a targeted disruption of the mdr1a mouse gene. Oral treatment with increasing doses of rifampicin resulted in elevated drug levels in the livers of mdr1a (-/-) mice compared with mdr1a (+/+) mice at all doses. Consistent with the enhanced accumulation of rifampicin in mdr1a (-/-) mice, lower doses of rifampicin were required for induction of CYP3A proteins, and the magnitude of CYP3A induction was greater at all doses of rifampicin in mdr1a (-/-) mice compared with mdr1a (+/+) mice. We conclude that Pgp-mediated transport is a critical element influencing the CYP3A inductive response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

P-glycoprotein (Pgp), a transmembrane efflux pump encoded by the MDR1 gene, transports various lipophilic drugs that enter the cell by passive diffusion through the lipid bilayer. Pgp-expressing multidrug-resistant cell lines are not usually cross-resistant to a hydrophilic antifolate methotrexate (MTX). MTX enters cells primarily through a folate carrier, but passive diffusion becomes the primary mode of MTX uptake in carrier-deficient cells. To test if a deficiency in MTX carrier would allow Pgp to confer resistance to MTX, a MTX carrier-deficient cell line (3T6-C26) was infected with a recombinant retrovirus expressing the human MDR1 gene. The infected 3T6-C26 cells showed increased survival in MTX relative to uninfected cells. Multistep selection of the infected cells with vinblastine led to increased Pgp expression and a concomitant increase in resistance to MTX. MTX resistance of Pgp-expressing 3T6-C26 cells was reduced by Pgp inhibitors, including a Pgp-specific monoclonal antibody UTC2. In contrast, the expression and the inhibition of Pgp had no effect on MTX resistance in 3T6 cells with normal carrier-mediated MTX uptake. Thus, a deficiency in the MTX carrier enables Pgp to confer resistance to MTX, suggesting that hydrophilic compounds may become Pgp substrates when such compounds enter cells by passive diffusion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introdução: Infecções relacionadas à assistência de saúde (IRAS) representam hoje um dos principais desafios da qualidade do cuidado do paciente, principalmente em pacientes submetido a transplante de células tronco e hematopoiéticas (TCTH) O banho diário com a clorexidina (CHG) degermante a 2% tem sido proposto principalmente em unidades de terapia intensivas (UTIs) para diminuir a colonização bacteriana do paciente e assim diminuir IRAS. O objetivo deste estudo foi avaliar o impacto do banho com CHG degermante a 2% em unidade de internação de TCTH na incidência de infecção e colonização por patógenos multirresistentes e ainda avaliar seu impacto na sensibilidade das bactérias ao antisséptico. Métodos: Foi realizado um estudo quasi-experimental, com duração de 9 anos, com início em janeiro/2005 até dezembro/2013. A intervenção foi iniciada em agosto de 2009, sendo que os períodos pré e pós-intervenção tiveram duração de 4,5 anos. As taxas de IRAS, infecção por gram-negativos multirresistentes e infecção e colonização por enterococo resistente a vancomicina (VRE) foram avaliadas através de série temporal, para estudar o impacto da intervenção. As concentrações inibitórias mínimas (CIM) das bactérias para a CHG com e sem o inibidor de bomba de efluxo (CCCP) foram avaliadas nos dois períodos. Os genes de resistência a CHG foram estudados por meio da PCR e a clonalidade dos isolados por eletroforese em campo pulsátil. Resultados: Foi observada redução significativa na incidência de infecção e colonização de VRE na unidade no período pós-intervenção (p: 0,001). Essa taxa permaneceu estável em outras UTIs clínicas do hospital. Contudo as taxas de infecção por Gram negativos multirresistentes aumentou nos últimos anos na unidade. Não ocorreu diminuição na taxa de IRAS na unidade. As CIMs testadas de CHG aumentaram nas amostras de VRE e K. pneumoniae após o período de exposição ao antisséptico, com queda importante da CIM após o uso do CCCP, revelando ser a bomba de efluxo, um importante mecanismo de resistência à CHG. As amostras de A. baumannii e P. aeruginosa não apresentaram aumento da CIM após período de exposição à clorexidina. As bombas de efluxo Ade A, B e C estiveram presentes na maioria dos A. baumannii do grupo controle (66%). A bomba cepA foi encontrada em 67% de todas as K. pneumoniae testadas e em 44,5% das P. aeruginosas do grupo pré intervenção. Observamos uma relação positiva entre a presença da CepA nas amostras de K. pneumoniae e a resposta ao CCCP: de todas as 49 amostras CepA positivas 67,3% obtiveram redução do seu MIC em 4 diluições após adição do CCCP. A avaliação de clonalidade demonstrou padrão policlonal das amostras de VRE, K. pneumoniae e A. baumannii avaliadas. Em relação às amostras de P. aeruginosa foi observado que no período pós-intervenção ocorreu predominância de um clone com > 80% semelhança em 10 das 22 amostras avaliadas pelo dendrograma. Conclusões: O banho de clorexidina teve impacto na redução da incidência de infecção e colonização por VRE na unidade de TCTH, e não teve o mesmo impacto nas bactérias gram-negativas. Os mecanismos moleculares de resistência à clorexidina estão intimamente ligados à presença de bomba de efluxo, sendo provavelmente o principal mecanismo de resistência e tolerância das bactérias ao antisséptico