922 resultados para Efficient error correction
Resumo:
Reduced form estimation of multivariate data sets currently takes into account long-run co-movement restrictions by using Vector Error Correction Models (VECM' s). However, short-run co-movement restrictions are completely ignored. This paper proposes a way of taking into account short-and long-run co-movement restrictions in multivariate data sets, leading to efficient estimation of VECM' s. It enables a more precise trend-cycle decomposition of the data which imposes no untested restrictions to recover these two components. The proposed methodology is applied to a multivariate data set containing U.S. per-capita output, consumption and investment Based on the results of a post-sample forecasting comparison between restricted and unrestricted VECM' s, we show that a non-trivial loss of efficiency results whenever short-run co-movement restrictions are ignored. While permanent shocks to consumption still play a very important role in explaining consumption’s variation, it seems that the improved estimates of trends and cycles of output, consumption, and investment show evidence of a more important role for transitory shocks than previously suspected. Furthermore, contrary to previous evidence, it seems that permanent shocks to output play a much more important role in explaining unemployment fluctuations.
Resumo:
Corresponding to $C_{0}[n,n-r]$, a binary cyclic code generated by a primitive irreducible polynomial $p(X)\in \mathbb{F}_{2}[X]$ of degree $r=2b$, where $b\in \mathbb{Z}^{+}$, we can constitute a binary cyclic code $C[(n+1)^{3^{k}}-1,(n+1)^{3^{k}}-1-3^{k}r]$, which is generated by primitive irreducible generalized polynomial $p(X^{\frac{1}{3^{k}}})\in \mathbb{F}_{2}[X;\frac{1}{3^{k}}\mathbb{Z}_{0}]$ with degree $3^{k}r$, where $k\in \mathbb{Z}^{+}$. This new code $C$ improves the code rate and has error corrections capability higher than $C_{0}$. The purpose of this study is to establish a decoding procedure for $C_{0}$ by using $C$ in such a way that one can obtain an improved code rate and error-correcting capabilities for $C_{0}$.
Resumo:
This thesis is focused on the study of techniques that allow to have reliable transmission of multimedia content in streaming and broadcasting applications, targeting in particular video content. The design of efficient error-control mechanisms, to enhance video transmission systems reliability, has been addressed considering cross-layer and multi-layer/multi-dimensional channel coding techniques to cope with bit errors as well as packet erasures. Mechanisms for unequal time interleaving have been designed as a viable solution to reduce the impact of errors and erasures by acting on the time diversity of the data flow, thus enhancing robustness against correlated channel impairments. In order to account for the nature of the factors which affect the physical layer channel in the evaluation of FEC schemes performances, an ad-hoc error-event modeling has been devised. In addition, the impact of error correction/protection techniques on the quality perceived by the consumers of video services applications and techniques for objective/subjective quality evaluation have been studied. The applicability and value of the proposed techniques have been tested by considering practical constraints and requirements of real system implementations.
Resumo:
The space environment has always been one of the most challenging for communications, both at physical and network layer. Concerning the latter, the most common challenges are the lack of continuous network connectivity, very long delays and relatively frequent losses. Because of these problems, the normal TCP/IP suite protocols are hardly applicable. Moreover, in space scenarios reliability is fundamental. In fact, it is usually not tolerable to lose important information or to receive it with a very large delay because of a challenging transmission channel. In terrestrial protocols, such as TCP, reliability is obtained by means of an ARQ (Automatic Retransmission reQuest) method, which, however, has not good performance when there are long delays on the transmission channel. At physical layer, Forward Error Correction Codes (FECs), based on the insertion of redundant information, are an alternative way to assure reliability. On binary channels, when single bits are flipped because of channel noise, redundancy bits can be exploited to recover the original information. In the presence of binary erasure channels, where bits are not flipped but lost, redundancy can still be used to recover the original information. FECs codes, designed for this purpose, are usually called Erasure Codes (ECs). It is worth noting that ECs, primarily studied for binary channels, can also be used at upper layers, i.e. applied on packets instead of bits, offering a very interesting alternative to the usual ARQ methods, especially in the presence of long delays. A protocol created to add reliability to DTN networks is the Licklider Transmission Protocol (LTP), created to obtain better performance on long delay links. The aim of this thesis is the application of ECs to LTP.
Resumo:
This paper is a summary of the main contribu- tions of the PhD thesis published in [1]. The main research contributions of the thesis are driven by the research question how to design simple, yet efficient and robust run-time adaptive resource allocation schemes within the commu- nication stack of Wireless Sensor Network (WSN) nodes. The thesis addresses several problem domains with con- tributions on different layers of the WSN communication stack. The main contributions can be summarized as follows: First, a a novel run-time adaptive MAC protocol is intro- duced, which stepwise allocates the power-hungry radio interface in an on-demand manner when the encountered traffic load requires it. Second, the thesis outlines a metho- dology for robust, reliable and accurate software-based energy-estimation, which is calculated at network run- time on the sensor node itself. Third, the thesis evaluates several Forward Error Correction (FEC) strategies to adap- tively allocate the correctional power of Error Correcting Codes (ECCs) to cope with timely and spatially variable bit error rates. Fourth, in the context of TCP-based communi- cations in WSNs, the thesis evaluates distributed caching and local retransmission strategies to overcome the perfor- mance degrading effects of packet corruption and trans- mission failures when transmitting data over multiple hops. The performance of all developed protocols are eval- uated on a self-developed real-world WSN testbed and achieve superior performance over selected existing ap- proaches, especially where traffic load and channel condi- tions are suspect to rapid variations over time.
Children's performance estimation in mathematics and science tests over a school year: A pilot study
Resumo:
The metacognitve ability to accurately estimate ones performance in a test, is assumed to be of central importance for initializing task-oriented effort. In addition activating adequate problem-solving strategies, and engaging in efficient error detection and correction. Although school children's' ability to estimate their own performance has been widely investigated, this was mostly done under highly-controlled, experimental set-ups including only one single test occasion. Method: The aim of this study was to investigate this metacognitive ability in the context of real achievement tests in mathematics. Developed and applied by a teacher of a 5th grade class over the course of a school year these tests allowed the exploration of the variability of performance estimation accuracy as a function of test difficulty. Results: Mean performance estimations were generally close to actual performance with somewhat less variability compared to test performance. When grouping the children into three achievement levels, results revealed higher accuracy of performance estimations in the high achievers compared to the low and average achievers. In order to explore the generalization of these findings, analyses were also conducted for the same children's tests in their science classes revealing a very similar pattern of results compared to the domain of mathematics. Discussion and Conclusion: By and large, the present study, in a natural environment, confirmed previous laboratory findings but also offered additional insights into the generalisation and the test dependency of students' performances estimations.
Resumo:
Next-generation sequencing (NGS) technology has become a prominent tool in biological and biomedical research. However, NGS data analysis, such as de novo assembly, mapping and variants detection is far from maturity, and the high sequencing error-rate is one of the major problems. . To minimize the impact of sequencing errors, we developed a highly robust and efficient method, MTM, to correct the errors in NGS reads. We demonstrated the effectiveness of MTM on both single-cell data with highly non-uniform coverage and normal data with uniformly high coverage, reflecting that MTM’s performance does not rely on the coverage of the sequencing reads. MTM was also compared with Hammer and Quake, the best methods for correcting non-uniform and uniform data respectively. For non-uniform data, MTM outperformed both Hammer and Quake. For uniform data, MTM showed better performance than Quake and comparable results to Hammer. By making better error correction with MTM, the quality of downstream analysis, such as mapping and SNP detection, was improved. SNP calling is a major application of NGS technologies. However, the existence of sequencing errors complicates this process, especially for the low coverage (
Resumo:
Cooperative and corporate farms have retained an important role for agricultural production in many transition countries of Central and Eastern Europe. Despite this importance, these farms' ownership structure, and particularly the ownership's effect on their investment activity, which is vital for efficient restructuring and the sector's future development, are still not well understood. This paper explores the ownership-investment relationship using data on Czech farms from 1997 to 2008. We allow for ownership-specific variability in farm investment behaviour analyzed by utilizing an error-correction accelerator model. Empirical results suggest significant differences in the level of investment activity, responsiveness to market signals, investment lumpiness, as well as investment sensitivity to financial variables among farms with different ownership characteristics. These differences imply that the internal structure of the Czech cooperative and corporate farms will be developing in the direction of a decreasing number of owners and an increasing ownership concentration.
Resumo:
Chromosome bi-orientation at the metaphase spindle is essential for precise segregation of the genetic material. The process is error-prone, and error-correction mechanisms exist to switch misaligned chromosomes to the correct, bi-oriented configuration. Here, we analyze several possible dynamical scenarios to explore how cells might achieve correct bi-orientation in an efficient and robust manner. We first illustrate that tension-mediated feedback between the sister kinetochores can give rise to a bistable switch, which allows robust distinction between a loose attachment with low tension and a strong attachment with high tension. However, this mechanism has difficulties in explaining how bi-orientation is initiated starting from unattached kinetochores. We propose four possible mechanisms to overcome this problem (exploiting molecular noise; allowing an efficient attachment of kinetochores already in the absence of tension; a trial-and-error oscillation; and a stochastic bistable switch), and assess their impact on the bi-orientation process. Based on our results and supported by experimental data, we put forward a trial-and-error oscillation and a stochastic bistable switch as two elegant mechanisms with the potential to promote bi-orientation both efficiently and robustly.
Resumo:
We describe a scheme for quantum-error correction that employs feedback and weak measurement rather than the standard tools of projective measurement and fast controlled unitary gates. The advantage of this scheme over previous protocols [for example, Ahn Phys. Rev. A 65, 042301 (2001)], is that it requires little side processing while remaining robust to measurement inefficiency, and is therefore considerably more practical. We evaluate the performance of our scheme by simulating the correction of bit flips. We also consider implementation in a solid-state quantum-computation architecture and estimate the maximal error rate that could be corrected with current technology.
Resumo:
We demonstrate a quantum error correction scheme that protects against accidental measurement, using a parity encoding where the logical state of a single qubit is encoded into two physical qubits using a nondeterministic photonic controlled-NOT gate. For the single qubit input states vertical bar 0 >, vertical bar 1 >, vertical bar 0 > +/- vertical bar 1 >, and vertical bar 0 > +/- i vertical bar 1 > our encoder produces the appropriate two-qubit encoded state with an average fidelity of 0.88 +/- 0.03 and the single qubit decoded states have an average fidelity of 0.93 +/- 0.05 with the original state. We are able to decode the two-qubit state (up to a bit flip) by performing a measurement on one of the qubits in the logical basis; we find that the 64 one-qubit decoded states arising from 16 real and imaginary single-qubit superposition inputs have an average fidelity of 0.96 +/- 0.03.
Resumo:
This study focuses on: (i) the responsiveness of the U.S. financial sector stock indices to foreign exchange (FX) and interest rate changes; and, (ii) the extent to which good model specification can enhance the forecasts from the associated models. Three models are considered. Only the error-correction model (ECM) generated efficient and consistent coefficient estimates. Furthermore, a simple zero lag model in differences which is clearly mis-specified, generated forecasts that are better than those of the ECM, even if the ECM depicts relationships that are more consistent with economic theory. In brief, FX and interest rate changes do not impact on the return-generating process of the stock indices in any substantial way. Most of the variation in the sector stock indices is associated with past variation in the indices themselves and variation in the market-wide stock index. These results have important implications for financial and economic policies.
Resumo:
The accuracy of altimetrically derived oceanographic and geophysical information is limited by the precision of the radial component of the satellite ephemeris. A non-dynamic technique is proposed as a method of reducing the global radial orbit error of altimetric satellites. This involves the recovery of each coefficient of an analytically derived radial error correction through a refinement of crossover difference residuals. The crossover data is supplemented by absolute height measurements to permit the retrieval of otherwise unobservable geographically correlated and linearly combined parameters. The feasibility of the radial reduction procedure is established upon application to the three day repeat orbit of SEASAT. The concept of arc aggregates is devised as a means of extending the method to incorporate longer durations, such as the 35 day repeat period of ERS-1. A continuous orbit is effectively created by including the radial misclosure between consecutive long arcs as an infallible observation. The arc aggregate procedure is validated using a combination of three successive SEASAT ephemerides. A complete simulation of the 501 revolution per 35 day repeat orbit of ERS-1 is derived and the recovery of the global radial orbit error over the full repeat period is successfully accomplished. The radial reduction is dependent upon the geographical locations of the supplementary direct height data. Investigations into the respective influences of various sites proposed for the tracking of ERS-1 by ground-based transponders are carried out. The potential effectiveness on the radial orbital accuracy of locating future tracking sites in regions of high latitudinal magnitude is demonstrated.
Resumo:
This thesis addresses the viability of automatic speech recognition for control room systems; with careful system design, automatic speech recognition (ASR) devices can be useful means for human computer interaction in specific types of task. These tasks can be defined as complex verbal activities, such as command and control, and can be paired with spatial tasks, such as monitoring, without detriment. It is suggested that ASR use be confined to routine plant operation, as opposed the critical incidents, due to possible problems of stress on the operators' speech. It is proposed that using ASR will require operators to adapt a commonly used skill to cater for a novel use of speech. Before using the ASR device, new operators will require some form of training. It is shown that a demonstration by an experienced user of the device can lead to superior performance than instructions. Thus, a relatively cheap and very efficient form of operator training can be supplied by demonstration by experienced ASR operators. From a series of studies into speech based interaction with computers, it is concluded that the interaction be designed to capitalise upon the tendency of operators to use short, succinct, task specific styles of speech. From studies comparing different types of feedback, it is concluded that operators be given screen based feedback, rather than auditory feedback, for control room operation. Feedback will take two forms: the use of the ASR device will require recognition feedback, which will be best supplied using text; the performance of a process control task will require task feedback integrated into the mimic display. This latter feedback can be either textual or symbolic, but it is suggested that symbolic feedback will be more beneficial. Related to both interaction style and feedback is the issue of handling recognition errors. These should be corrected by simple command repetition practices, rather than use error handling dialogues. This method of error correction is held to be non intrusive to primary command and control operations. This thesis also addresses some of the problems of user error in ASR use, and provides a number of recommendations for its reduction.
Resumo:
The impact of hybrid erbium-doped fiber amplifier (EDFA)/Raman amplification on a spectrally efficient coherent-wavelength-division-multiplexed (CoWDM) optical communication system is experimentally studied and modeled. Simulations suggested that 23-dB Raman gain over an unrepeatered span of 124 km single-mode fiber would allow a decrease of the mean input power of ~6 dB for a fixed bit-error rate (BER). Experimentally we demonstrated 1.2-dB Q-factor improvement for a 2-Tb/s seven-band CoWDM with backward Raman amplification. The system delivered an optical signal-to-noise ratio of 35 dB at the output of the receiver preamplifier providing a worst-case BER of 2 × 10 -6 over 49 subcarriers at 42.8 Gbaud, leaving a system margin (in terms of Q -factor) of ~4 dB from the forward-error correction threshold.