945 resultados para Eatwell plate
Resumo:
Over the past two decades, flat-plate particle collections have revealed the presence of a remarkable variety of both terrestrial and extraterrestrial material in the stratosphere [1-6]. The ratio of terrestrial to extraterrestrial material and the nature of material collected may vary over observable time scales. Variations in particle number density can be important since the earth’s atmospheric radiation balance, and therefore the earth’s climate, can be influenced by articulate absorption and scattering of radiation from the sun and earth [7-9]. In order to assess the number density of solid particles in the stratosphere, we have examined a representative fraction of the so1id particles from two flat-plate collection surfaces, whose collection dates are separated in time by 5 years.
Resumo:
New materials technology has provided the potential for the development of an innovative Hybrid Composite Floor Plate System (HCFPS) with many desirable properties, such as light weight, easy to construct, economical, demountable, recyclable and reusable. Component materials of HCFPS include a central Polyurethane (PU) core, outer layers of Glass-fibre Reinforced Cement (GRC) and steel laminates at tensile regions. HCFPS is configured such that the positive inherent properties of individual component materials are combined to offset any weakness and achieve optimum performance. Research has been carried out using extensive Finite Element (FE) computer simulations supported by experimental testing. Both the strength and serviceability requirements have been established for this lightweight floor plate system. This paper presents some of the research towards the development of HCFPS along with a parametric study to select suitable span lengths.
Resumo:
Here mixed convection boundary layer flow of a viscous fluid along a heated vertical semi-infinite plate is investigated in a non-absorbing medium. The relationship between convection and thermal radiation is established via boundary condition of second kind on the thermally radiating vertical surface. The governing boundary layer equations are transformed into dimensionless parabolic partial differential equations with the help of appropriate transformations and the resultant system is solved numerically by applying straightforward finite difference method along with Gaussian elimination technique. It is worthy to note that Prandlt number, Pr, is taken to be small (<< 1) which is appropriate for liquid metals. Moreover, the numerical results are demonstrated graphically by showing the effects of important physical parameters, namely, the modified Richardson number (or mixed convection parameter), Ri*, and surface radiation parameter, R, in terms of local skin friction and local Nusselt number coefficients.
Resumo:
Numerical investigation on mixed convection of a two-dimensional incompressible laminar flow over a horizontal flat plate with streamwise sinusoidal distribution of surface temperature has been performed for different values of Rayleigh number, Reynolds number and frequency of periodic temperature for constant Prandtl number and amplitude of periodic temperature. Finite element method adapted to rectangular non-uniform mesh elements by a non-linear parametric solution algorithm basis numerical scheme has been employed. The investigating parameters are the Rayleigh number, the Reynolds number and frequency of periodic temperature. The effect of variation of individual investigating parameters on mixed convection flow characteristics has been studied to observe the hydrodynamic and thermal behavior for while keeping the other parameters constant. The fluid considered in this study is air with Prandtl number 0.72. The results are obtained for the Rayleigh number range of 102 to 104, Reynolds number ranging from 1 to 100 and the frequency of periodic temperature from 1 to 5. Isotherms, streamlines, average and local Nusselt numbers are presented to show the effect of the different values of aforementioned investigating parameters on fluid flow and heat transfer.
Resumo:
Laboratory-based studies of human dietary behaviour benefit from highly controlled conditions; however, this approach can lack ecological validity. Identifying a reliable method to capture and quantify natural dietary behaviours represents an important challenge for researchers. In this study, we scrutinised cafeteria-style meals in the ‘Restaurant of the Future.’ Self-selected meals were weighed and photographed, both before and after consumption. Using standard portions of the same foods, these images were independently coded to produce accurate and reliable estimates of (i) initial self-served portions, and (ii) food remaining at the end of the meal. Plate cleaning was extremely common; in 86% of meals at least 90% of self-selected calories were consumed. Males ate a greater proportion of their self-selected meals than did females. Finally, when participants visited the restaurant more than once, the correspondence between selected portions was better predicted by the weight of the meal than by its energy content. These findings illustrate the potential benefits of meal photography in this context. However, they also highlight significant limitations, in particular, the need to exclude large amounts of data when one food obscures another.
Resumo:
YBCO wires which consist of well oriented plate-like fine grains are fabricated using a moving furnace to achieve higher mechanical strength. Melt-texturing experiments have been undertaken on YBCO wires with two different compositions: YBa1.5Cu2.9O7-x, and YBa1.8Cu3.0O7-x. Wires are extruded from a mixture of precursor powders (formed by a coprecipitation process) then textured by firing in a moving furnace. Size of secondary phases such as barium cuprate and copper oxide, and overall composition of the sample affect the orientation of the fine grains. At zero magnetic field, the YBa1.5Cu2.9O7-x wire shows the highest critical current density of 1,450 Acm-2 and 8,770 Acm-2 at 77K and 4.2K, respectively. At 1 T, critical current densities of 30 Acm-2 and 200 Acm-2, respectively, are obtained at 77K and 4.2K. Magnetisation curves are also obtained for one sample to evaluate critical current density using the Bean model. Analysis of the microstructure indicates that the starting composition of the green body significantly affects the achievement of grain alignment via melt-texturing processes.
Resumo:
The first representative chemical, structural, and morphological analysis of the solid particles from a single collection surface has been performed. This collection surface sampled the stratosphere between 17 and 19km in altitude in the summer of 1981, and therefore before the 1982 eruptions of El Chichón. A particle collection surface was washed free of all particles with rinses of Freon and hexane, and the resulting wash was directed through a series of vertically stacked Nucleopore filters. The size cutoff for the solid particle collection process in the stratosphere is found to be considerably less than 1 μm. The total stratospheric number density of solid particles larger than 1μm in diameter at the collection time is calculated to be about 2.7×10−1 particles per cubic meter, of which approximately 95% are smaller than 5μm in diameter. Previous classification schemes are expanded to explicitly recognize low atomic number material. With the single exception of the calcium-aluminum-silicate (CAS) spheres all solid particle types show a logarithmic increase in number concentration with decreasing diameter. The aluminum-rich particles are unique in showing bimodal size distributions. In addition, spheres constitute only a minor fraction of the aluminum-rich material. About 2/3 of the particles examined were found to be shards of rhyolitic glass. This abundant volcanic material could not be correlated with any eruption plume known to have vented directly to the stratosphere. The micrometeorite number density calculated from this data set is 5×10−2 micrometeorites per cubic meter of air, an order of magnitude greater than the best previous estimate. At the collection altitude, the maximum collision frequency of solid particles >5μm in average diameter is calculated to be 6.91×10−16 collisions per second, which indicates negligible contamination of extraterrestrial particles in the stratosphere by solid anthropogenic particles.
Resumo:
This study explored the dynamic performance of an innovative Hybrid Composite Floor Plate System (HCFPS), composed of Polyurethane (PU) core, outer layers of Glass–fibre Reinforced Cement (GRC) and steel laminates at tensile regions, using experimental testing and Finite Element (FE) modelling. Experimental testing included heel impact and walking tests for 3200 mm span HCFPS panels. FE models of the HCFPS were developed using the FE program ABAQUS and validated with experimental results. HCFPS is a light-weight high frequency floor system with excellent damping ratio of 5% (bare floor) due to the central PU core. Parametric studies were conducted using the validated FE models to investigate the dynamic response of the HCFPS and to identify characteristics that influence acceleration response under human induced vibration in service. This vibration performance was compared with recommended acceptable perceptibility limits. The findings of this study show that HCFPS can be used in residential and office buildings as a light-weight floor system, which does not exceed the perceptible thresholds due to human induced vibrations.
Resumo:
This study explored the flexural performance of an innovative Hybrid Composite Floor Plate System (HCFPS), comprised of Polyurethane (PU) core, outer layers of Glass-fibre Reinforced Cement (GRC) and steel laminates at tensile regions, using experimental testing and Finite Element (FE) modelling. Bending and cyclic loading tests for the HCFPS panels and a comprehensive material testing program for component materials were carried out. HCFPS test panel exhibited ductile behaviour and flexural failure with a deflection ductility index of 4. FE models of HCFPS were developed using the program ABAQUS and validated with experimental results. The governing criteria of stiffness and flexural performance of HCFPS can be improved by enhancing the properties of component materials. HCFPS is 50-70% lighter in weight when compared to conventional floor systems. This study shows that HCFPS can be used for floor structures in commercial and residential buildings as an alternative to conventional steel concrete composite systems.
Resumo:
In the modern built environment, building construction and demolition consume a large amount of energy and emits greenhouse gasses due to widely used conventional construction materials such as reinforced and composite concrete. These materials consume high amount of natural resources and possess high embodied energy. More energy is required to recycle or reuse such materials at the cessation of use. Therefore, it is very important to use recyclable or reusable new materials in building construction in order to conserve natural resources and reduce the energy and emissions associated with conventional materials. Advancements in materials technology have resulted in the introduction of new composite and hybrid materials in infrastructure construction as alternatives to the conventional materials. This research project has developed a lightweight and prefabricatable Hybrid Composite Floor Plate System (HCFPS) as an alternative to conventional floor system, with desirable properties, easy to construct, economical, demountable, recyclable and reusable. Component materials of HCFPS include a central Polyurethane (PU) core, outer layers of Glass-fiber Reinforced Cement (GRC) and steel laminates at tensile regions. This research work explored the structural adequacy and performance characteristics of hybridised GRC, PU and steel laminate for the development of HCFPS. Performance characteristics of HCFPS were investigated using Finite Element (FE) method simulations supported by experimental testing. Parametric studies were conducted to develop the HCFPS to satisfy static performance using sectional configurations, spans, loading and material properties as the parameters. Dynamic response of HCFPS floors was investigated by conducting parametric studies using material properties, walking frequency and damping as the parameters. Research findings show that HCFPS can be used in office and residential buildings to provide acceptable static and dynamic performance. Design guidelines were developed for this new floor system. HCFPS is easy to construct and economical compared to conventional floor systems as it is lightweight and prefabricatable floor system. This floor system can also be demounted and reused or recycled at the cessation of use due to its component materials.
Resumo:
It is exciting to be living at a time when the big questions in biology can be investigated using modern genetics and computing [1]. Bauzà-Ribot et al.[2] take on one of the fundamental drivers of biodiversity, the effect of continental drift in the formation of the world’s biota 3 and 4, employing next-generation sequencing of whole mitochondrial genomes and modern Bayesian relaxed molecular clock analysis. Bauzà-Ribot et al.[2] conclude that vicariance via plate tectonics best explains the genetic divergence between subterranean metacrangonyctid amphipods currently found on islands separated by the Atlantic Ocean. This finding is a big deal in biogeography, and science generally [3], as many other presumed biotic tectonic divergences have been explained as probably due to more recent transoceanic dispersal events [4]. However, molecular clocks can be problematic 5 and 6 and we have identified three issues with the analyses of Bauzà-Ribot et al.[2] that cast serious doubt on their results and conclusions. When we reanalyzed their mitochondrial data and attempted to account for problems with calibration 5 and 6, modeling rates across branches 5 and 7 and substitution saturation [5], we inferred a much younger date for their key node. This implies either a later trans-Atlantic dispersal of these crustaceans, or more likely a series of later invasions of freshwaters from a common marine ancestor, but either way probably not ancient tectonic plate movements.
Resumo:
Sandwich panels comprising steel facings and a polystyrene foam core are increasingly used as roof and wall claddings in buildings in Australia. When they are subjected to loads causing bending and/or axial compression, the steel plate elements of their profiled facing are susceptible to local buckling. However, when compared to panels with no foam core, they demonstrate significantly improved local buckling behaviour because they are supported by foam. In order to quantify such improvements and to validate the use of available design buckling stress formulae, an investigation using finite element analyses and laboratory experiments was carried out on steel plates that are commonly used in Australia of varying yield stress and thickness supported by a polystyrene foam core. This paper presents the details of this investigation, the buckling results and their comparison with available design buckling formulae.
Resumo:
Nutrition knowledge is associated with dietary choices in the general population and has been proposed to contribute to socioeconomic differences in food choices and corresponding socioeconomic gradients in mortality and morbidity for a number of diet-related illnesses. This paper explores current evidence regarding socioeconomic differences in nutrition knowledge, reviewing the components of nutrition knowledge that have been assessed, the dietary intake or food choice outcomes considered, and the socioeconomic indicators used. In addition, this paper considers how socioeconomic differences in nutrition knowledge may arise, and potential determinants of inequalities in the application of nutrition knowledge. It highlights issues to consider when developing strategies to improve nutrition knowledge and facilitate knowledge application among those of lower socioeconomic position.
Resumo:
Thin plate spline finite element methods are used to fit a surface to an irregularly scattered dataset [S. Roberts, M. Hegland, and I. Altas. Approximation of a Thin Plate Spline Smoother using Continuous Piecewise Polynomial Functions. SIAM, 1:208--234, 2003]. The computational bottleneck for this algorithm is the solution of large, ill-conditioned systems of linear equations at each step of a generalised cross validation algorithm. Preconditioning techniques are investigated to accelerate the convergence of the solution of these systems using Krylov subspace methods. The preconditioners under consideration are block diagonal, block triangular and constraint preconditioners [M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta Numer., 14:1--137, 2005]. The effectiveness of each of these preconditioners is examined on a sample dataset taken from a known surface. From our numerical investigation, constraint preconditioners appear to provide improved convergence for this surface fitting problem compared to block preconditioners.