416 resultados para EXTRATROPICAL CYCLONES


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sensitivity to the horizontal resolution of the climate, anthropogenic climate change, and seasonal predictive skill of the ECMWF model has been studied as part of Project Athena—an international collaboration formed to test the hypothesis that substantial progress in simulating and predicting climate can be achieved if mesoscale and subsynoptic atmospheric phenomena are more realistically represented in climate models. In this study the experiments carried out with the ECMWF model (atmosphere only) are described in detail. Here, the focus is on the tropics and the Northern Hemisphere extratropics during boreal winter. The resolutions considered in Project Athena for the ECMWF model are T159 (126 km), T511 (39 km), T1279 (16 km), and T2047 (10 km). It was found that increasing horizontal resolution improves the tropical precipitation, the tropical atmospheric circulation, the frequency of occurrence of Euro-Atlantic blocking, and the representation of extratropical cyclones in large parts of the Northern Hemisphere extratropics. All of these improvements come from the increase in resolution from T159 to T511 with relatively small changes for further resolution increases to T1279 and T2047, although it should be noted that results from this very highest resolution are from a previously untested model version. Problems in simulating the Madden–Julian oscillation remain unchanged for all resolutions tested. There is some evidence that increasing horizontal resolution to T1279 leads to moderate increases in seasonal forecast skill during boreal winter in the tropics and Northern Hemisphere extratropics. Sensitivity experiments are discussed, which helps to foster a better understanding of some of the resolution dependence found for the ECMWF model in Project Athena

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The World Weather Research Programme (WWRP) and the World Climate Research Programme (WCRP) have identified collaborations and scientific priorities to accelerate advances in analysis and prediction at subseasonal-to-seasonal time scales, which include i) advancing knowledge of mesoscale–planetary-scale interactions and their prediction; ii) developing high-resolution global–regional climate simulations, with advanced representation of physical processes, to improve the predictive skill of subseasonal and seasonal variability of high-impact events, such as seasonal droughts and floods, blocking, and tropical and extratropical cyclones; iii) contributing to the improvement of data assimilation methods for monitoring and predicting used in coupled ocean–atmosphere–land and Earth system models; and iv) developing and transferring diagnostic and prognostic information tailored to socioeconomic decision making. The document puts forward specific underpinning research, linkage, and requirements necessary to achieve the goals of the proposed collaboration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Potential vorticity (PV) succinctly describes the evolution of large-scale atmospheric flow because of its material conservation and invertibility properties. However, diabatic processes in extratropical cyclones can modify PV and influence both mesoscale weather and the evolution of the synoptic-scale wave pattern. In this investigation, modification of PV by diabatic processes is diagnosed in a Met Office Unified Model (MetUM) simulation of a North Atlantic cyclone using a set of PV tracers. The structure of diabatic PV within the extratropical cyclone is investigated and linked to the processes responsible for it. On the mesoscale, a tripole of diabatic PV is generated across the tropopause fold extending down to the cold front. The structure results from a dipole in heating across the frontal interface due to condensation in the warm conveyor belt flanking the upper side of the fold and evaporation of precipitation in the dry intrusion and below. On isentropic surfaces intersecting the tropopause, positive diabatic PV is generated on the stratospheric side, while negative diabatic PV is generated on the tropospheric side. The stratospheric diabatic PV is generated primarily by long-wave cooling which peaks at the tropopause itself due to the sharp gradient in humidity there. The tropospheric diabatic PV originates locally from the long-wave radiation and non-locally by advection out of the top of heating associated with the large-scale cloud, convection and boundary layer schemes. In most locations there is no diabatic modification of PV at the tropopause itself but diabatic PV anomalies would influence the tropopause indirectly through the winds they induce and subsequent advection. The consequences of this diabatic PV dipole for the evolution of synoptic-scale wave patterns are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective cyclone tracking applied to a 30-yr reanalysis dataset shows that cyclone development in the summer and autumn seasons is active in the tropics and extratropics and inactive in the subtropics. To understand this geographically bimodal distribution of cyclone development associated with tropical and extratropical cyclones quantitatively, the direct relationship between cyclone types and their environments are assessed by using a parameter space of environmental variables [environmental parameter space (EPS)]. The number of cyclones is analyzed in terms of two different factors: the environmental conditions favorable for cyclone development and the area size that satisfies the favorable condition. The EPS analysis is mainly conducted for two representative environmental parameters that are commonly used for cyclone analysis: potential intensity for tropical cyclones and baroclinicity for extratropical cyclones. The geographically bimodal distribution is attributed to the high sensitivity of the cyclone development to the change in the environmental fields from tropics to extratropics. In addition, the bimodal distribution is partly attributed to the rapid change in the environmental fields from tropics to extratropics. The EPS analysis also shows that other environmental parameters, including relative humidity and vertical velocity, may enhance the contrast between the tropics (extratropics) and subtropics, whereas they are not essential for determining cyclone types. The relationship between cyclones and their environments is found to be similar between the hemispheres in the EPS, although the geographical distribution, particularly the longitudinal uniformity, is markedly different between the hemispheres.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extratropical cyclones dominate autumn and winter weather over western Europe. The strongest cyclones, often termed windstorms, have a large socio-economic impact due to the strong surface winds and associated storm surges in coastal areas. Here we show that sting jets are a common feature of windstorms; up to a third of the 100 most intense North Atlantic winter windstorms over the last two decades satisfy conditions for sting jets. The sting jet is a mesoscale descending airstream that can cause strong near-surface winds in the dry slot of the cyclone, a region not usually associated with strong winds. Despite their localized transient nature these sting jets can cause significant damage, a prominent example being the storm that devastated southeast England on 16 October 1987. We present the first regional climatology of windstorms with sting jets. Previously analysed sting jet cases appear to have been exceptional in their track over northwest Europe rather than in their strength.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Identifying the source of atmospheric rivers: Are they rivers of moisture exported from the subtropics or footprints left behind by poleward travelling storms? The term atmospheric river is used to describe corridors of strong water vapor transport in the troposphere. Filaments of enhanced water vapor, commonly observed in satellite imagery extending from the subtropics to the extratropics, are routinely used as a proxy for identifying these regions of strong water vapor transport. The precipitation associated with these filaments of enhanced water vapor can lead to high impact flooding events. However, there remains some debate as to how these filaments form. In this paper we analyse the transport of water vapor within a climatology of wintertime North Atlantic extratropical cyclones. Results show that atmospheric rivers are formed by the cold front which sweeps up water vapor in the warm sector as it catches up with the warm front. This causes a narrow band of high water vapor content to form ahead of the cold front at the base of the warm conveyor belt airflow. Thus, water vapor in the cyclone's warm sector, and not long-distance transport of water vapor from the subtropics, is responsible for the generation of filaments of high water vapor content. A continuous cycle of evaporation and moisture convergence within the cyclone replenishes water vapor lost via precipitation. Thus, rather than representing a direct and continuous feed of moist air from the subtropics into the centre of a cyclone (as suggested by the term atmospheric river), these filaments are, in-fact, the result of water vapor exported from the cyclone and thus they represent the footprints left behind as cyclones travel polewards from subtropics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Warm conveyor belts (WCBs) are the main ascending air masses within extratropical cyclones. They often exhibit strong condensation and precipitation, associated with ascent on large scales or embedded convection. Most of the air outflows into the upper troposphere as part of a ridge. Such ridges are an integral part of Rossby waves propagating along the tropopause and are identified with a negative potential vorticity (PV) anomaly and associated anticyclonic circulation. It has been argued that diabatic modification of PV in WCBs has an important influence on the extent of the ridge, propagation of Rossby waves and weather impacts downstream. Following the coherent ensemble of trajectories defining a WCB, PV is expected to increase with time while below the level of maximum latent heating and then decrease as trajectories ascend above the heating maximum. In models, it is found that the net change is approximately zero, so that the average PV of the WCB outflow is almost equal to the PV of its inflow. Here, the conditions necessary for this evolution are explored analytically using constraints arising from the conservation of circulation. It is argued that the net PV change is insensitive to the details of diabatic processes and the PV maximum midway along a WCB depends primarily on the net diabatic transport of mass from the inflow to the outflow layer. The main effect of diabatic processes within a WCB is to raise the isentropic level of the outflow, rather than to modify PV.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polar lows are intense meso- a -scale cyclones that develop over the oceans poleward of the main baroclinic zone. A number of previous studies have reported polar low formation over the Sea of Japan within the East Asian winter monsoon. To understand the climatology of polar lows over the Sea of Japan, a tracking al- gorithm for polar lows is applied to the recent JRA-55 reanalysis. The polar low tracking is applied to 36 cold seasons (October–March) from October 1979 to March 2015. The polar lows over the Sea of Japan reach their maximum intensity on the southeastern side of the midline between the Japanese islands and the Asian continent. Consistent with previous case studies, composite analysis demonstrates that the polar low devel- opment is associated with the enhanced northerly flow on the western side of a synoptic-scale extratropical cyclone, with the cold trough in the midtroposphere and with increased heat fluxes from the sea surface. Furthermore, the present climatological study has revealed two dominant directions of motion of the polar lows: southward and eastward. Southward-moving polar lows are steered by a strong northerly flow in the lower troposphere, which is enhanced on the western side of synoptic-scale extratropical cyclones, while the eastward-moving polar lows occur within a planetary-scale westerly flow in the midlatitudes. Thus, the di- rection of polar low motion reflects the difference in planetary- and synoptic-scale conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents an analysis of a lowermost stratospheric air intrusion event over the coast of Brazil, which may have been responsible for a secondary surface cyclogenesis over the southwestern Atlantic Ocean. The surface cyclone initiated at 0600 UTC 17 April 1999 in a cold air mass in the rear of a cold front after a primary cyclone developed over the same region. The analysis of the secondary cyclone revealed the presence of lowermost stratospheric air intrusion characterized by anomalous potential vorticity (PV), dry air, and high concentration of ozone in atmospheric column. The system developed on the eastern side of an upper level core of PV anomaly, which induced a cyclonic wind circulation at lower levels and favored the onset of the secondary cyclone. In midlevels (500 hPa), the cutoff low development contributed to reduce the propagation speed of the wave pattern. This feature seemed to (1) allow the low-level cold/dry air to heat/moisten associated with sensible and latent fluxes transferred from the ocean to the atmosphere, which intensified a baroclinic zone parallel to the coast, and (2) contribute to the long duration of the system. The present analysis indicates that this secondary cyclone development could be the result of the coupling between the PV anomaly in the upper levels and low-level air-sea interaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study presents the first analysis of the energetics associated with a hybrid cyclone`s transition in the Southern Hemisphere, Hurricane Catarina ( March 2004). Catarina has earned a place in history as the first documented South Atlantic hurricane, but its unusual tropical transition is still poorly understood. Here we show that Catarina`s transition was preceded by marked environmental changes in the Lorenz energy cycle, with an abrupt shift from a baroclinic to a predominantly barotropic state. Such changes help to explain the unusual vortex`s growth until its transition was completed. Although the vortex`s energy flux is not explicitly calculated, a likely mechanism linking the environmental energetics with Catarina is the extraction of eddy kinetic energy from horizontal momentum and heat transfers within the through component of the blocking. The results advance the understanding of this rare event and suggest that the technique has a great potential to study transitioning systems in general.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diabatische Rossby-Wellen (DRWs) sind zyklonale Wirbel in der unteren Troposphäre, welche sich durch einen thermodynamisch-dynamischen Mechanismus kontinuierlich regenerieren und dabei schnell propagieren können. Vorangehende Untersuchungen schreiben derartigen zyklonalen Wirbeln das Potential zu, unter Wechselwirkung mit einer Anomalie an der Tropopause eine rapide Zyklonenintensivierung und folglich extreme Wetterereignisse hervorrufen zu können. DRWs wurden bisher meist in idealisierten Studien untersucht, woraus sich noch einige offene Fragen zu diesem Phänomen, besonders in realen Modelldaten, ergeben.rnrnIm Mittelpunkt dieser Arbeit steht die Fallstudie einer DRW, die im Dezember 2005 über dem Nordatlantik auftrat. Der Lebenszyklus des Systems ist über mehrere Tage und durch verschiedene Phasen verfolgbar und resultiert in einer explosiven Druckvertiefung. Zur Untersuchung der Fallstudie wurde mit operationellen Daten eines Globalmodelles sowie mit den Resultaten eines feinskaligeren Regionalmodelles gearbeitet, auf welche unterschiedliche Analysewerkzeuge angewendet wurden. rnrnDie eingehende Untersuchung der Propagationsphase der DRW bekräftigte das Vorhandensein von genügend Feuchte und Baroklinität als essentiell für den Propagationsmechanismus und die Intensität der DRW. Während der Propagationsphase arbeitet der selbsterhaltende DRW-Mechanismus unabhängig von einer von den Wellen an der Tropopause ausgehenden Anregung. Sensitivitätsstudien mit dem Regionalmodell, in denen die Umgebungsbedingungen der DRW lokal modifiziert wurden, ergaben, dass die Propagation einen relativ robusten Ablauf darstellt. Dementsprechend war in den vier untersuchten operationellen Vorhersagen die Propagationsphase gut wiedergegeben, während die rapide Intensivierung, wie sie gemäß den Analysen aufgetreten ist, von zwei der Vorhersagen verfehlt wurde.rnrnBei der Untersuchung der Intensivierungsphase stellten sich die Position und die zeitliche Abstimmung der Bewegung der Anomalie an der Tropopause relativ zur DRW in der unteren Troposphäre sowie die Stärke der Systeme als entscheidende Einflussfaktoren heraus. In den Entwicklungen der Sensitivitätssimulationen deutete sich an, dass ein unabhängig von der DRW an geeigneter Position entstandener zyklonaler Wirbel konstruktiver zu einer starken Zyklonenintensivierung beitragen kann als die DRW.rnrnIm zweiten Teil der Arbeit wurde ein Datensatz über die Nordhemisphäre für die Jahre 2004-2008 hinsichtlich des geographischen Vorkommens und der Intensivierung von DRWs untersucht. DRWs ereigneten sich in diesem Zeitraum über dem Atlantik (255 DRWs) halb so oft wie über dem Pazifik (515 DRWs). Ihre Entstehungsgebiete befanden sich über den Ostteilen der Kontinente und den Westhälften der Ozeane. Die Zugbahnen folgten größtenteils der baroklinen Zone der mittleren Breiten. Von den erfassten DRWs intensivierten sich im Atlanik 16% zu explosiven Tiefdruckgebieten, über dem Pazifik liegt der Anteil mit 11% etwas niedriger. Damit tragen DRWs zu etwa 20% der sich explosiv intensivierenden außertropischen Zyklonen bei.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A global climatology of warm conveyor belts (WCBs) is presented for the years 1979–2010, based on trajectories calculated with Interim ECMWF Re-Analysis (ERA-Interim) data. WCB trajectories are identified as strongly ascending air parcels (600 hPa in 2 days) near extratropical cyclones. Corroborating earlier studies, WCBs are more frequent during winter than summer and they ascend preferentially in the western ocean basins between 25° and 50° latitude. Before ascending, WCB trajectories typically approach from the subtropics in summer and from more midlatitude regions in winter. Considering humidity, cloud water, and potential temperature along WCBs confirms that they experience strong condensation and integrated latent heating during the ascent (typically >20 K). Liquid and ice water contents along WCBs peak at about 700 and 550 hPa, respectively. The mean potential vorticity (PV) evolution shows typical tropospheric values near 900 hPa, followed by an increase to almost 1 potential vorticity unit (PVU) at 700 hPa, and a decrease to less than 0.5 PVU at 300 hPa. These low PV values in the upper troposphere constitute significant negative anomalies with amplitudes of 1–3 PVU, which can strongly influence the downstream flow. Considering the low-level diabatic PV production, (i) WCBs starting at low latitudes (<40°) are unlikely to attain high PV (due to weak planetary vorticity) although they exhibit the strongest latent heating, and (ii) for those ascending at higher latitudes, a strong vertical heating gradient and high absolute vorticity are both important. This study therefore provides climatological insight into the cloud diabatic formation of significant positive and negative PV anomalies in the extratropical lower and upper troposphere, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The co-occurrence of warm conveyor belts (WCBs), strongly ascending moist airstreams in extratropical cyclones, and stratospheric potential vorticity (PV) streamers, indicators for breaking Rossby waves on the tropopause, is investigated for a 21-yr period in the Northern Hemisphere using Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) data. WCB outflows and PV streamers are respectively identified as two- and three-dimensional objects and tracked during their life cycle. PV streamers are more frequent than WCB outflows and nearly 15% of all PV streamers co-occur with WCBs during their life cycle, whereas about 60% of all WCB outflows co-occur with PV streamers. Co-occurrences are most frequent over the North Atlantic and North Pacific in spring and winter. WCB outflows are often located upstream of the PV streamers and form earlier, indicating the importance of diabatic processes for downstream Rossby wave breaking. Less frequently, PV streamers occur first, leading to the formation of new WCBs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The atmospheric seasonal cycle of the North Atlantic region is dominated by meridional movements of the circulation systems: from the tropics, where the West African Monsoon and extreme tropical weather events take place, to the extratropics, where the circulation is dominated by seasonal changes in the jetstream and extratropical cyclones. Climate variability over the North Atlantic is controlled by various mechanisms. Atmospheric internal variability plays a crucial role in the mid-latitudes. However, El Niño-Southern Oscillation (ENSO) is still the main source of predictability in this region situated far away from the Pacific. Although the ENSO influence over tropical and extra-tropical areas is related to different physical mechanisms, in both regions this teleconnection seems to be non-stationary in time and modulated by multidecadal changes of the mean flow. Nowadays, long observational records (greater than 100 years) and modeling projects (e.g., CMIP) permit detecting non-stationarities in the influence of ENSO over the Atlantic basin, and further analyzing its potential mechanisms. The present article reviews the ENSO influence over the Atlantic region, paying special attention to the stability of this teleconnection over time and the possible modulators. Evidence is given that the ENSO–Atlantic teleconnection is weak over the North Atlantic. In this regard, the multidecadal ocean variability seems to modulate the presence of teleconnections, which can lead to important impacts of ENSO and to open windows of opportunity for seasonal predictability.