975 resultados para ENDPLATE POTENTIALS
Resumo:
We present a novel approach for analyzing single-trial electroencephalography (EEG) data, using topographic information. The method allows for visualizing event-related potentials using all the electrodes of recordings overcoming the problem of previous approaches that required electrode selection and waveforms filtering. We apply this method to EEG data from an auditory object recognition experiment that we have previously analyzed at an ERP level. Temporally structured periods were statistically identified wherein a given topography predominated without any prior information about the temporal behavior. In addition to providing novel methods for EEG analysis, the data indicate that ERPs are reliably observable at a single-trial level when examined topographically.
Resumo:
The three most frequent forms of mild cognitive impairment (MCI) are single-domain amnestic MCI (sd-aMCI), single-domain dysexecutive MCI (sd-dMCI) and multiple-domain amnestic MCI (md-aMCI). Brain imaging differences among single domain subgroups of MCI were recently reported supporting the idea that electroencephalography (EEG) functional hallmarks can be used to differentiate these subgroups. We performed event-related potential (ERP) measures and independent component analysis in 18 sd-aMCI, 13 sd-dMCI and 35 md-aMCI cases during the successful performance of the Attentional Network Test. Sensitivity and specificity analyses of ERP for the discrimination of MCI subgroups were also made. In center-cue and spatial-cue warning stimuli, contingent negative variation (CNV) was elicited in all MCI subgroups. Two independent components (ICA1 and 2) were superimposed in the time range on the CNV. The ICA2 was strongly reduced in sd-dMCI compared to sd-aMCI and md-aMCI (4.3 vs. 7.5% and 10.9% of the CNV component). The parietal P300 ERP latency increased significantly in sd-dMCI compared to md-aMCI and sd-aMCI for both congruent and incongruent conditions. This latency for incongruent targets allowed for a highly accurate separation of sd-dMCI from both sd-aMCI and md-aMCI with correct classification rates of 90 and 81%, respectively. This EEG parameter alone performed much better than neuropsychological testing in distinguishing sd-dMCI from md-aMCI. Our data reveal qualitative changes in the composition of the neural generators of CNV in sd-dMCI. In addition, they document an increased latency of the executive P300 component that may represent a highly accurate hallmark for the discrimination of this MCI subgroup in routine clinical settings.
Resumo:
We present a method to compute, assuming a continuous distribution of sources, the elementary potential created by a differential element of volume of matter, whose integral generates a known adsorption field V(z) for a planar surface. We show that this elementary potential is univocally determined by the original field and can be used to generate adsorption potentials for other nontrivial geometries. We illustrate the method for the Chizmeshya-Cole-Zaremba physisorption potential and discuss several examples and applications.
Resumo:
Various modern nucleon-nucleon (NN) potentials yield a very accurate fit to the nucleon-nucleon scattering phase shifts. The differences between these interactions in describing properties of nuclear matter are investigated. Various contributions to the total energy are evaluated employing the Hellmann-Feynman theorem. Special attention is paid to the two-nucleon correlation functions derived from these interactions. Differences in the predictions of the various interactions can be traced back to the inclusion of nonlocal terms.
Resumo:
Background: Earlier contributions have documented significant changes in sensory, attention-related endogenous event-related potential (ERP) components and θ band oscillatory responses during working memory activation in patients with schizophrenia. In patients with first-episode psychosis, such studies are still scarce and mostly focused on auditory sensory processing. The present study aimed to explore whether subtle deficits of cortical activation are present in these patients before the decline of working memory performance. Methods: We assessed exogenous and endogenous ERPs and frontal θ event-related synchronization (ERS) in patients with first-episode psychosis and healthy controls who successfully performed an adapted 2-back working memory task, including 2 visual n-backworking memory tasks as well as oddball detection and passive fixation tasks. Results: We included 15 patients with first-episode psychosis and 18 controls in this study. Compared with controls, patients with first-episode psychosis displayed increased latencies of early visual ERPs and phasic θ ERS culmination peak in all conditions. However, they also showed a rapid recruitment of working memory-related neural generators, even in pure attention tasks, as indicated by the decreased N200 latency and increased amplitude of sustained θ ERS in detection compared with controls. Limitations: Owing to the limited sample size, no distinction was made between patients with first-episode psychosis with positive and negative symptoms. Although we controlled for the global load of neuroleptics, medication effect cannot be totally ruled out. Conclusion: The present findings support the concept of a blunted electroencephalographic response in patients with first-episode psychosis who recruit the maximum neural generators in simple attention conditions without being able to modulate their brain activation with increased complexity of working memory tasks.
Resumo:
Information on level density for nuclei with mass numbers A?20250 is deduced from discrete low-lying levels and neutron resonance data. The odd-mass nuclei exhibit in general 47 times the level density found for their neighboring even-even nuclei at the same excitation energy. This excess corresponds to an entropy of ?1.7kB for the odd particle. The value is approximately constant for all midshell nuclei and for all ground state spins. For these nuclei it is argued that the entropy scales with the number of particles not coupled in Cooper pairs. A simple model based on the canonical ensemble theory accounts qualitatively for the observed properties.
Resumo:
A numerical study of Brownian motion of noninteracting particles in random potentials is presented. The dynamics are modeled by Langevin equations in the high friction limit. The random potentials are Gaussian distributed and short ranged. The simulations are performed in one and two dimensions. Different dynamical regimes are found and explained. Effective subdiffusive exponents are obtained and commented on.
Resumo:
There has been a recent revolution in the ability to manipulate micrometer-sized objects on surfaces patterned by traps or obstacles of controllable configurations and shapes. One application of this technology is to separate particles driven across such a surface by an external force according to some particle characteristic such as size or index of refraction. The surface features cause the trajectories of particles driven across the surface to deviate from the direction of the force by an amount that depends on the particular characteristic, thus leading to sorting. While models of this behavior have provided a good understanding of these observations, the solutions have so far been primarily numerical. In this paper we provide analytic predictions for the dependence of the angle between the direction of motion and the external force on a number of model parameters for periodic as well as random surfaces. We test these predictions against exact numerical simulations.
Resumo:
The effective diffusion coefficient for the overdamped Brownian motion in a tilted periodic potential is calculated in closed analytical form. Universality classes and scaling properties for weak thermal noise are identified near the threshold tilt where deterministic running solutions set in. In this regime the diffusion may be greatly enhanced, as compared to free thermal diffusion with, for a realistic experimental setup, an enhancement of up to 14 orders of magnitude.
Resumo:
PURPOSE: Neurophysiological monitoring aims to improve the safety of pedicle screw placement, but few quantitative studies assess specificity and sensitivity. In this study, screw placement within the pedicle is measured (post-op CT scan, horizontal and vertical distance from the screw edge to the surface of the pedicle) and correlated with intraoperative neurophysiological stimulation thresholds. METHODS: A single surgeon placed 68 thoracic and 136 lumbar screws in 30 consecutive patients during instrumented fusion under EMG control. The female to male ratio was 1.6 and the average age was 61.3 years (SD 17.7). Radiological measurements, blinded to stimulation threshold, were done on reformatted CT reconstructions using OsiriX software. A standard deviation of the screw position of 2.8 mm was determined from pilot measurements, and a 1 mm of screw-pedicle edge distance was considered as a difference of interest (standardised difference of 0.35) leading to a power of the study of 75 % (significance level 0.05). RESULTS: Correct placement and stimulation thresholds above 10 mA were found in 71 % of screws. Twenty-two percent of screws caused cortical breach, 80 % of these had stimulation thresholds above 10 mA (sensitivity 20 %, specificity 90 %). True prediction of correct position of the screw was more frequent for lumbar than for thoracic screws. CONCLUSION: A screw stimulation threshold of >10 mA does not indicate correct pedicle screw placement. A hypothesised gradual decrease of screw stimulation thresholds was not observed as screw placement approaches the nerve root. Aside from a robust threshold of 2 mA indicating direct contact with nervous tissue, a secondary threshold appears to depend on patients' pathology and surgical conditions.
Resumo:
ABSTRACT Investigations into water potentials in the soil-plant system are of great relevance in environments with abiotic stresses, such as salinity and drought. An experiment was developed using bell pepper in a Neossolo Flúvico (Fluvent) irrigated with water of six levels of electrical conductivity (0, 1, 3, 5, 7 and 9 dS m-1) by using exclusively NaCl and by simulating the actual condition (using a mixture of salts). The treatments were arranged in a randomized block design, in a 6 × 2 factorial arrangement, with four replicates. Soil matric (Ψm) and osmotic (Ψo) potentials were determined 70 days after transplanting (DAT). Soil total potential was considered as the sum of Ψm and Ψo. Leaf water (obtained with the Scholander Chamber) and osmotic potentials were determined before sunrise (predawn) and at noon at 42 and 70 DAT. There were no significant differences between the salt sources used in the irrigation water for soil and plant water potentials. The supply of salts to the soil through irrigation water was the main factor responsible for the decrease in Ψo in the soil and in bell pepper leaves. The total potential of bell pepper at predawn reached values of -1.30 and -1.33 MPa at 42 and 70 DAT, respectively, when water of 9 dS m-1 was used in the irrigation. The total potential at noon reached -2.19 MPa. The soil subjected to the most saline treatment reached a water potential of -1.20 MPa at 70 DAT. There was no predawn equilibrium between the total water potentials of the soil and the plant, indicating that soil potential cannot be considered similar to that of the plant. The determination of the osmotic potential in the soil solution should not be neglected in saline soils, since it has strong influence on the calculation of the total potential.