287 resultados para ENDOTHELIN
Resumo:
Background: Changes in cellular phenotype result from underlying changes in mRNA transcription and translation. Endothelin-1 stimulates cardiomyocyte hypertrophy with associated changes in mRNA/protein expression and an increase in the rate of protein synthesis. Insulin also increases the rate of translation but does not promote overt cardiomyocyte hypertrophy. One mechanism of translational regulation is through 5' terminal oligopyrimidine tracts (TOPs) that, in response to growth stimuli, promote mRNA recruitment to polysomes for increased translation. TOP mRNAs include those encoding ribosomal proteins, but the full panoply remains to be established. Here, we used microarrays to compare the effects of endothelin-1 and insulin on the global transcriptome of neonatal rat cardiomyocytes, and on mRNA recruitment to polysomes (i.e. the translatome). Results: Globally, endothelin-1 and insulin (1 h) promoted >1.5-fold significant (false discovery rate < 0.05) changes in expression of 341 and 38 RNAs, respectively. For these transcripts with this level of change there was little evidence of translational regulation. However, 1336 and 712 RNAs had >1.25-fold significant changes in expression in total and/or polysomal RNA induced by endothelin-1 or insulin, respectively, of which ~35% of endothelin-1-responsive and ~56% of insulin-responsive transcripts were translationally regulated. Of mRNAs for established proteins recruited to polysomes in response to insulin, 49 were known TOP mRNAs with a further 15 probable/possible TOP mRNAs, but 49 had no identifiable TOP sequences or other consistent features in the 5' untranslated region. Conclusions: Endothelin-1, rather than insulin, substantially affects global transcript expression to promote cardiomyocyte hypertrophy. Effects on RNA recruitment to polysomes are subtle, with differential effects of endothelin-1 and insulin on specific transcripts. Furthermore, although insulin promotes recruitment of TOP mRNAs to cardiomyocyte polysomes, not all recruited mRNAs are TOP mRNAs.
Resumo:
The related inflammatory cytokines, interleukin- (IL-) 1β and IL-33, are both implicated in the response of the heart to injury. They also activate mitogen-activated protein kinases (MAPKs) in cardiac myocytes. The hypertrophic Gq protein-coupled receptor agonist endothelin-1 is a potentially cardioprotective peptide and may modulate the inflammatory response. Endothelin-1 also stimulates (MAPKs) in cardiac myocytes and promotes rapid changes in expression of mRNAs encoding intercellular and intracellular signalling components including receptors for IL-33 (ST2) and phosphoprotein phosphatases. Prior exposure to endothelin-1 may specifically modulate the response to IL-33 and, more globally, influence MAPK activation by different stimuli. Neonatal rat ventricular myocytes were exposed to IL-1β or IL-33 with or without pre-exposure to endothelin-1 (5 h) and MAPK activation assessed. IL-33 activated ERK1/2, JNKs and p38-MAPK, but to a lesser degree than IL-1β. Endothelin-1 increased expression of soluble IL-33 receptors (sST2 receptors) which may prevent binding of IL-33 to the cell-surface receptors. However, pretreatment with endothelin-1 only inhibited activation of p38-MAPK by IL-33 with no significant influence on ERK1/2 and a small increase in activation of JNKs. Inhibition of p38-MAPK signalling following pretreatment with endothelin-1 was also detected with IL-1β, H2O2 or tumour necrosis factor α (TNFα) indicating an effect intrinsic to the signalling pathway. Endothelin-1 pretreatment suppressed the increase in expression of IL-6 mRNA induced by IL-1β and decreased the duration of expression of TNFα mRNA. Coupled with the general decrease in p38-MAPK signalling, we conclude that endothelin-1 attenuates the cardiac myocyte inflammatory response, potentially to confer cardioprotection.
Resumo:
Krüppel-like transcription factors (Klfs) modulate fundamental cell processes. Cardiac myocytes are terminally-differentiated, but hypertrophy in response to stimuli such as endothelin-1. H2O2 or cytokines promote myocyte apoptosis. Microarray studies of neonatal rat myocytes identified several Klfs as endothelin-1-responsive genes. We used quantitative PCR for further analysis of Klf expression in neonatal rat myocytes. In response to endothelin-1, Klf2 mRNA expression was rapidly increased ( approximately 9-fold; 15-30 min) with later increases in expression of Klf4 and Klf6 ( approximately 5-fold; 30-60 min). All were regulated as immediate early genes (cycloheximide did not inhibit the increases in expression). Klf5 expression was increased at 1-2 h ( approximately 13-fold) as a second phase response (cycloheximide inhibited the increase). These increases were transient and attenuated by U0126. H2O2 increased expression of Klf2, Klf4 and Klf6, but interleukin-1beta or tumor necrosis factor alpha downregulated Klf2 expression with no effect on Klf4 or Klf6. Of the Klfs which repress transcription, endothelin-1 rapidly downregulated expression of Klf3, Klf11 and Klf15. The dynamic regulation of expression of multiple Klf family members in cardiac myocytes suggests that, as a family, they are actively involved in regulating phenotypic responses (hypertrophy and apoptosis) to extracellular stimuli.
Resumo:
Background: Endothelin-1 stimulates Gq protein-coupled receptors to promote proliferation in dividing cells or hypertrophy in terminally differentiated cardiomyocytes. In cardiomyocytes, endothelin-1 rapidly (within minutes) stimulates protein kinase signaling, including extracellular-signal regulated kinases 1/2 (ERK1/2; though not ERK5), with phenotypic/physiological changes developing from approximately 12 h. Hypertrophy is associated with changes in mRNA/protein expression, presumably consequent to protein kinase signaling, but the connections between early, transient signaling events and developed hypertrophy are unknown. Results: Using microarrays, we defined the early transcriptional responses of neonatal rat cardiomyocytes to endothelin-1 over 4 h, differentiating between immediate early gene (IEG) and second phase RNAs with cycloheximide. IEGs exhibited differential temporal and transient regulation, with expression of second phase RNAs within 1 h. Of transcripts upregulated at 30 minutes encoding established proteins, 28 were inhibited >50% by U0126 (which inhibits ERK1/2/5 signaling), with 9 inhibited 25-50%. Expression of only four transcripts was not inhibited. At 1 h, most RNAs (approximately 67%) were equally changed in total and polysomal RNA with approximately 17% of transcripts increased to a greater extent in polysomes. Thus, changes in expression of most protein-coding RNAs should be reflected in protein synthesis. However, approximately 16% of transcripts were essentially excluded from the polysomes, including some protein-coding mRNAs, presumably inefficiently translated. Conclusion: The phasic, temporal regulation of early transcriptional responses induced by endothelin-1 in cardiomyocytes indicates that, even in terminally differentiated cells, signals are propagated beyond the primary signaling pathways through transcriptional networks leading to phenotypic changes (that is, hypertrophy). Furthermore, ERK1/2 signaling plays a major role in this response.
Resumo:
Endothelin-1 promotes cardiomyocyte hypertrophy by inducing changes in gene expression. Immediate early genes including activating transcription factor 3 (Atf3), Egr1 and Ptgs2 are rapidly and transiently upregulated by endothelin-1 in cardiomyocytes. Atf3 regulates expression of downstream genes and is implicated in negative feedback regulation of other immediate early genes. To identify Atf3-regulated genes, we knocked down Atf3 expression in cardiomyocytes exposed to endothelin-1 and used microarrays to interrogate the transcriptomic effects. Of upregulated mRNAs, expression of 23 (including Egr1, Ptgs2) was enhanced and expression of 25 was inhibited by Atf3 knockdown. Using quantitative PCR, we determined that knockdown of Atf3 had little effect on upregulation of Egr1 mRNA over 30 min, but abolished the subsequent decline, causing sustained Egr1 mRNA expression and enhanced protein expression. This resulted from direct binding of Atf3 to the Egr1 promoter. Mathematical modelling established that Atf3 can suffice to suppress Egr1 expression. Given the widespread co-regulation of Atf3 with Egr1, we suggest that the Atf3-Egr1 negative feedback loop is of general significance. Loss of Atf3 caused abnormal cardiomyocyte growth, presumably resulting from dysregulation of target genes. Our data therefore identify Atf3 as a nexus in cardiomyocyte hypertrophy required to facilitate the full and proper growth response.
Resumo:
Neuropeptide signalling at the plasma membrane is terminated by neuropeptide degradation by cell-surface peptidases, and by beta-arrestin-dependent receptor desensitization and endocytosis. However, receptors continue to signal from endosomes by beta-arrestin-dependent processes, and endosomal sorting mediates recycling and resensitization of plasma membrane signalling. The mechanisms that control signalling and trafficking of receptors in endosomes are poorly defined. We report a major role for endothelin-converting enzyme-1 (ECE-1) in controlling substance P (SP) and the neurokinin 1 receptor (NK(1)R) in endosomes of myenteric neurones. ECE-1 mRNA and protein were expressed by myenteric neurones of rat and mouse intestine. SP (10 nM, 10 min) induced interaction of NK(1)R and beta-arrestin at the plasma membrane, and the SP-NK(1)R-beta-arrestin signalosome complex trafficked by a dynamin-mediated mechanism to ECE-1-containing early endosomes, where ECE-1 can degrade SP. After 120 min, NK(1)R recycled from endosomes to the plasma membrane. ECE-1 inhibitors (SM-19712, PD-069185) and the vacuolar H(+)ATPase inhibitor bafilomycin A(1), which prevent endosomal SP degradation, suppressed NK(1)R recycling by >50%. Preincubation of neurones with SP (10 nM, 5 min) desensitized Ca(2+) transients to a second SP challenge after 10 min, and SP signals resensitized after 60 min. SM-19712 inhibited NK(1)R resensitization by >90%. ECE-1 inhibitors also caused sustained SP-induced activation of extracellular signal-regulated kinases, consistent with stabilization of the SP-NK(1)R-beta-arrestin signalosome. By degrading SP and destabilizing endosomal signalosomes, ECE-1 has a dual role in controlling endocytic signalling and trafficking of the NK(1)R: promoting resensitization of G protein-mediated plasma membrane signalling, and terminating beta-arrestin-mediated endosomal signalling.
Resumo:
Neuropeptide signaling at the cell surface is regulated by metalloendopeptidases, which degrade peptides in the extracellular fluid, and beta-arrestins, which interact with G protein-coupled receptors (GPCRs) to mediate desensitization. beta-Arrestins also recruit GPCRs and mitogen-activated protein kinases to endosomes to allow internalized receptors to continue signaling, but the mechanisms regulating endosomal signaling are unknown. We report that endothelin-converting enzyme-1 (ECE-1) degrades substance P (SP) in early endosomes of epithelial cells and neurons to destabilize the endosomal mitogen-activated protein kinase signalosome and terminate signaling. ECE-1 inhibition caused endosomal retention of the SP neurokinin 1 receptor, beta-arrestins, and Src, resulting in markedly sustained ERK2 activation in the cytosol and nucleus, whereas ECE-1 overexpression attenuated ERK2 activation. ECE-1 inhibition also enhanced SP-induced expression and phosphorylation of the nuclear death receptor Nur77, resulting in cell death. Thus, endosomal ECE-1 attenuates ERK2-mediated SP signaling in the nucleus to prevent cell death. We propose that agonist availability in endosomes, here regulated by ECE-1, controls beta-arrestin-dependent signaling of endocytosed GPCRs.
Resumo:
BACKGROUND AND PURPOSE: The metalloendopeptidase endothelin-converting enzyme 1 (ECE-1) is prominently expressed in the endothelium where it converts big endothelin to endothelin-1, a vasoconstrictor peptide. Although ECE-1 is found in endosomes in endothelial cells, the role of endosomal ECE-1 is unclear. ECE-1 degrades the pro-inflammatory neuropeptide substance P (SP) in endosomes to promote recycling and re-sensitization of its neurokinin 1 (NK(1)) receptor. We investigated whether ECE-1 regulates NK(1) receptor re-sensitization and the pro-inflammatory effects of SP in the endothelium. EXPERIMENTAL APPROACH: We examined ECE-1 expression, SP trafficking and NK(1) receptor re-sensitization in human microvascular endothelial cells (HMEC-1), and investigated re-sensitization of SP-induced plasma extravasation in rats. KEY RESULTS: HMEC-1 expressed all four ECE-1 isoforms (a-d), and fluorescent SP trafficked to early endosomes containing ECE-1b/d. The ECE-1 inhibitor SM-19712 prevented re-sensitization of SP-induced Ca2+ signals in HMEC-1 cells. Immunoreactive ECE-1 and NK(1) receptors co-localized in microvascular endothelial cells in the rat. SP-induced extravasation of Evans blue in the urinary bladder, skin and ears of the rat desensitized when the interval between two SP injections was 10 min, and re-sensitized after 480 min. SM-19712 inhibited this re-sensitization. CONCLUSIONS AND IMPLICATIONS: By degrading endocytosed SP, ECE-1 promotes the recycling and re-sensitization of NK(1) receptors in endothelial cells, and thereby induces re-sensitization of the pro-inflammatory effects of SP. Thus, ECE-1 inhibitors may ameliorate the pro-inflammatory actions of SP.
Resumo:
Agonist-induced internalization of somatostatin receptors (ssts) determines subsequent cellular responsiveness to peptide agonists and influences sst receptor scintigraphy. To investigate sst2A trafficking, rat sst2A tagged with epitope was expressed in human embryonic kidney cells and tracked by antibody labeling. Confocal microscopical analysis revealed that stimulation with sst and octreotide induced internalization of sst2A. Internalized sst2A remained sequestrated within early endosomes, and 60 min after stimulation, internalized sst2A still colocalized with beta-arrestin1-enhanced green fluorescence protein (EGFP), endothelin-converting enzyme-1 (ECE-1), and rab5a. Internalized (125)I-Tyr(11)-SST-14 was rapidly hydrolyzed by endosomal endopeptidases, with radioactive metabolites being released from the cell. Internalized (125)I-Tyr(1)-octreotide accumulated as an intact peptide and was released from the cell as an intact peptide ligand. We have identified ECE-1 as one of the endopeptidases responsible for inactivation of internalized SST-14. ECE-1-mediated cleavage of SST-14 was inhibited by the specific ECE-1 inhibitor, SM-19712, and by preventing acidification of endosomes using bafilomycin A(1). ECE-1 cleaved SST-14 but not octreotide in an acidic environment. The metallopeptidases angiotensin-1 converting enzyme and ECE-2 did not hydrolyze SST-14 or octreotide. Our results show for the first time that stimulation with SST-14 and octreotide induced sequestration of sst2A into early endosomes and that endocytosed SST-14 is degraded by endopeptidases located in early endosomes. Furthermore, octreotide was not degraded by endosomal peptidases and was released as an intact peptide. This mechanism may explain functional differences between octreotide and SST-14 after sst2A stimulation. Moreover, further investigation of endopeptidase-regulated trafficking of neuropeptides may result in novel concepts of neuropeptide receptor inactivation in cancer diagnosis.
Resumo:
Neuropeptide signaling requires the presence of G protein-coupled receptors (GPCRs) at the cell surface. Activated GPCRs interact with beta-arrestins, which mediate receptor desensitization, endocytosis, and mitogenic signaling, and the peptide-receptor-arrestin complex is sequestered into endosomes. Although dissociation of beta-arrestins is required for receptor recycling and resensitization, the critical event that initiates this process is unknown. Here we report that the agonist availability in the endosomes, controlled by the membrane metalloendopeptidase endothelin-converting enzyme 1 (ECE-1), determines stability of the peptide-receptor-arrestin complex and regulates receptor recycling and resensitization. Substance P (SP) binding to the tachykinin neurokinin 1 receptor (NK1R) induced membrane translocation of beta-arrestins followed by trafficking of the SP-NK1R-beta-arrestin complex to early endosomes containing ECE-1a-d. ECE-1 degraded SP in acidified endosomes, disrupting the complex; beta-arrestins returned to the cytosol, and the NK1R, freed from beta-arrestins, recycled and resensitized. An ECE-1 inhibitor, by preventing NK1R recycling in endothelial cells, inhibited resensitization of SP-induced inflammation. This mechanism is a general one because ECE-1 similarly regulated NK3R resensitization. Thus, peptide availability in endosomes, here regulated by ECE-1, determines the stability of the peptide-receptor-arrestin complex. This mechanism regulates receptor recycling, which is necessary for sustained signaling, and it may also control beta-arrestin-dependent mitogenic signaling of endocytosed receptors. We propose that other endosomal enzymes and transporters may similarly control the availability of transmitters in endosomes to regulate trafficking and signaling of GPCRs. Antagonism of these endosomal processes represents a strategy for inhibiting sustained signaling of receptors, and defects may explain the tachyphylaxis of drugs that are receptor agonists.
Resumo:
Although cell surface metalloendopeptidases degrade neuropeptides in the extracellular fluid to terminate signaling, the function of peptidases in endosomes is unclear. We report that isoforms of endothelin-converting enzyme-1 (ECE-1a-d) are present in early endosomes, where they degrade neuropeptides and regulate post-endocytic sorting of receptors. Calcitonin gene-related peptide (CGRP) co-internalizes with calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), beta-arrestin2, and ECE-1 to early endosomes, where ECE-1 degrades CGRP. CGRP degradation promotes CLR/RAMP1 recycling and beta-arrestin2 redistribution to the cytosol. ECE-1 inhibition or knockdown traps CLR/RAMP1 and beta-arrestin2 in endosomes and inhibits CLR/RAMP1 recycling and resensitization, whereas ECE-1 overexpression has the opposite effect. ECE-1 does not regulate either the resensitization of receptors for peptides that are not ECE-1 substrates (e.g., angiotensin II), or the recycling of the bradykinin B(2) receptor, which transiently interacts with beta-arrestins. We propose a mechanism by which endosomal ECE-1 degrades neuropeptides in endosomes to disrupt the peptide/receptor/beta-arrestin complex, freeing internalized receptors from beta-arrestins and promoting recycling and resensitization.
Resumo:
Extracellular signal-regulated kinases 1/2 (ERK1/2) and their substrates, p90 ribosomal S6 kinases (RSKs), phosphorylate different transcription factors, contributing differentially to transcriptomic profiles. In cardiomyocytes, ERK1/2 are required for >70% of the transcriptomic response to endothelin-1. Here, we investigated the role of RSKs in the transcriptomic responses to Gq protein-coupled receptor agonists, endothelin-1, phenylephrine (generic α1-adrenergic receptor agonist) and A61603 (α1A-adrenergic receptor selective). Phospho-ERK1/2 and phospho-RSKs appeared in cardiomyocyte nuclei within 2-3 min of stimulation (endothelin-1>a61603≈phenylephrine). All agonists increased nuclear RSK2, but only endothelin-1 increased nuclear RSK1 content. PD184352 (inhibits ERK1/2 activation) and BI-D1870 (inhibits RSKs) were used to dissect the contribution of RSKs to the endothelin-1-responsive transcriptome. Of 213 RNAs upregulated at 1 h, 51% required RSKs for upregulation whereas 29% required ERK1/2 but not RSKs. The transcriptomic response to phenylephrine overlapped with, but was not identical to, endothelin-1. As with endothelin-1, PD184352 inhibited upregulation of most phenylephrine-responsive transcripts, but the greater variation in effects of BI-D1870 suggests that differential RSK signalling influences global gene expression. A61603 induced similar changes in RNA expression in cardiomyocytes as phenylephrine, indicating that the signal was mediated largely through α1A-adrenergic receptors. A61603 also increased expression of immediate early genes in perfused adult rat hearts and, as in cardiomyocytes, upregulation of the majority of genes was inhibited by PD184352. PD184352 or BI-D1870 prevented the increased surface area induced by endothelin-1 in cardiomyocytes. Thus, RSKs play a significant role in regulating cardiomyocyte gene expression and hypertrophy in response to Gq protein-coupled receptor stimulation.
Resumo:
Maximally effective concentrations of endothelin-1 (ET-1), acidic FGF (aFGF), or 12-O-tetradecanoylphorbol-13-acetate (TPA) activated mitogen-activated protein kinase (MAPK) by 3-4-fold in crude extracts of myocytes cultured from neonatal rat heart ventricles. Maximal activation was achieved after 5 min. Thereafter, MAPK activity stimulated by ET-1 or aFGF declined to control values within 1-2 h, whereas activation by TPA was more sustained. Two peaks of MAPK activity (a 42- and a 44-kDa MAPK) were resolved in cells exposed to ET-1 or aFGF by fast protein liquid chromatography on a Mono Q column. One major and one minor peak of MAPK kinase (MAPKK) was stimulated by ET-1 or aFGF. Cardiac myocytes expressed protein kinase C (PKC)-alpha, -delta, -epsilon and -zeta as shown immunoblotting. Exposure to 1 microM TPA for 24 h down-regulated PKC-alpha, -delta, and -epsilon, but not PKC-zeta. This maneuver wholly abolished the activation of MAPK on re-exposure to TPA but did not affect the response to aFGF. The effect of ET-1 was partially down-regulated. ET-1 stimulated phospho[3H]inositide hydrolysis 18-fold, whereas aFGF stimulated by only 30%. Agonists which initially utilize dissimilar signaling pathways may therefore converge at the level of MAPKK/MAPK and this may be relevant to the hypertrophic response of the heart.