856 resultados para ELECTROLYTE MEMBRANES
Resumo:
The performance of an ABPBI-based High Temperature H-2/O-2 PEMFC system was studied under different experimental conditions. Increasing the temperature from 130 to 170 degrees C improved the cell performance, even though further increase was not beneficial for the system. Humidification of the H-2 stream ameliorated this behaviour, even though operating above 170 degrees C is not advisable in terms of cell performance. A significant electrolyte dehydration seems to negatively affect the fuel cell performance, especially in the case of the anode. In the presence of 2% vol. CO in the H-2 stream, the temperature exerted a positive effect on the cell performance, reducing the strong adsorption of this poison on the platinum sites. Moreover, humidification of the H-2 + CO stream increased the maximum power densities of the cell, further alleviating the CO poisoning effects. Actual CO-O-2 fuel cell results confirmed the significant beneficial effect of the relative humidity on the kinetics of the CO oxidation process. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Nafion membranes series N117 doped with ammonium, at different cation fractions (H+/NH4+), were investigated for ionic transport and water vapor uptake, for several water activities and temperatures. Ammonium cations change both properties of the polymer in a similar manner. Membrane ionic conductivity and water vapor uptake (lambda) decrease as the ammonium concentration increases in the polymer. Ionic transport activation energies are calculated and the transport mechanism of ammonium ions in Nafion is discussed. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.040203jes] All rights reserved.
Resumo:
Polymers from natural sources are particularly useful as biomaterials for medical devices applications. In this study, the results of characterization of a gelatin network electrolyte doped with europium triflate (Eu(CF3SO3)(3)) are described. The unusual electronic properties of the trivalent lanthanide ions make them well suited as luminescent reporter groups, with many applications in biotechnology. Samples of solvent-free electrolytes were prepared with a range of guest salt concentration. Materials based on Eu(CF3SO3)(3) were obtained as mechanically robust, flexible, transparent, and completely amorphous films. Samples were characterized by thermal analysis (thermo-gravimetry analysis (TGA) and differential scanning calorimetry (DSC), electrochemical stability, scanning electronmicroscopy (SEM), and photoluminescence spectroscopy.
Resumo:
Plasticized natural macromolecules-based polymer electrolyte samples were prepared and characterized. The plasticization of chitosonium acetate with glycerol increased the ionic conductivity value from 3.0 x 10(-7) S/cm to 1.1 x 10(-5) S/cm. The conductivity temperature relationship of the samples exhibits either VTF or Arrhenius type depending on the glycerol concentration in the sample. The dielectric studies evidencing the relaxation process in the plasticized sample at low frequency region are due to the electric polarization effect. Moreover, the samples were transparent in the Vis region, showed thermal stability up to 160 degrees C and good surface uniformity.
Resumo:
The present study investigates gel polymer electrolytes (GPEs) based on sodium alginate plasticized with glycerol containing either CH3COOH or LiClO4. The membranes showed ionic conductivity results of 3.1 x 10(-4) S/cm for the samples with LiClO4 and 8.7x10(-5) S/cm for the samples with CH3COOH at room temperature. The samples also showed thermal stability up to 160 degrees C, transparency of up to 90%, surface uniformity and adhesion to glass and steel. Moreover, Dynamic Mechanical Analysis revealed two relaxations for both samples and the Ea values were between 18 and 36 kJ/mol. All the results obtained indicate that alginate-based GPEs can be used as electrolytes in electrochemical devices.
Resumo:
A novel polymer electrolyte membrane electrochemical reactor (PEMER) configuration has been employed for the direct electrooxidation of propargyl alcohol (PGA), a model primary alcohol, towards its carboxylic acid derivatives in alkaline medium. The PEMER configuration comprised of an anode and cathode based on nanoparticulate Ni and Pt electrocatalysts, respectively, supported on carbonaceous substrates. The electrooxidation of PGA was performed in 1.0 M NaOH, where a cathode based on a gas diffusion electrode was manufactured for the reduction of oxygen in alkaline conditions. The performance of a novel alkaline anion-exchange membrane based on Chitosan (CS) and Poly(vinyl) alcohol (PVA) in a 50:50 composition ratio doped with a 5 wt.% of poly (4-vinylpyridine) organic ionomer cross-linked, methyl chloride quaternary salt resin (4VP) was assessed as solid polymer electrolyte. The influence of 4VP anionic ionomer loading of 7, 12 and 20 wt.% incorporated into the electrocatalytic layers was examined by SEM and cyclic voltammetry (CV) upon the optimisation of the electroactive area, the mechanical stability and cohesion of the catalytic ink onto the carbonaceous substrate for both electrodes. The performance of the 4VP/CS:PVA membrane was compared with the commercial alkaline anion-exchange membrane FAA −a membrane generally used in direct alcohol alkaline fuel cells- in terms of polarisation plots in alkaline conditions. Furthermore, preparative electrolyses of the electrooxidation of PGA was performed under alkaline conditions of 1 M NaOH at constant current density of 20 mA cm−2 using a PEMER configuration to provide proof of the principle of the feasibility of the electrooxidation of other alcohols in alkaline media. PGA conversion to Z isomers of 3-(2-propynoxy)-2-propenoic acid (Z-PPA) was circa 0.77, with average current efficiency of 0.32. Alkaline stability of the membranes within the PEMER configuration was finally evaluated after the electrooxidation of PGA.
Operation of polymer electrolyte membrane fuel cells with dry feeds: Design and operating strategies
Resumo:
The operation of polymer electrolyte membrane fuel cells (PEMFCs) with dry feeds has been examined with different fuel cell flow channel designs as functions of pressure, temperature and flow rate. Auto-humidified (or self-humidifying) PEMFC operation is improved at higher pressures and low gas velocities where axial dispersion enhances back-mixing of the product water with the dry feed. We demonstrate auto-humidified operation of the channel-less, self-draining fuel cell, based on a stirred tank reactor; data is presented showing auto-humidified operation from 25 to 115 degrees C at 1 and 3 atm. Design and operating requirements are derived for the auto-humidified operation of the channel-less, self-draining fuel cell. The auto-humidified self-draining fuel cell outperforms a fully humidified serpentine flow channel fuel cell at high current densities. The new design offers substantial benefits for simplicity of operation and control including: the ability to self-drain reducing flooding, the ability to uniformly disperse water removing current gradients and the ability to operate on dry feeds eliminating the need for humidifiers. Additionally, the design lends itself well to a modular design concept. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Electrolyte Transport in the Mammalian Colon: Mechanisms and Implications for Disease. Physiol. Rev. 82: 245-289, 2002.The colonic epithelium has both absorptive and secretory functions. The transport is characterized by a net absorption of NaCl, short-chain fatty acids (SCFA), and water, allowing extrusion of a feces with very little water and salt content. In addition, the epithelium does secret mucus, bicarbonate, and KCl. Polarized distribution of transport proteins in both luminal and basolateral membranes enables efficient salt transport in both directions, probably even within an individual cell. Meanwhile, most of the participating transport proteins have been identified, and their function has been studied in detail. Absorption of NaCl is a rather steady process that is controlled by steroid hormones regulating the expression of epithelial Na+ channels (ENaC), the Na+-K+-ATPase, and additional modulating factors such as the serum- and glucocorticoid-regulated kinase SGK. Acute regulation of absorption may occur by a Na+ feedback mechanism and the cystic fibrosis transmembrane conductance regulator (CFTR). Cl- secretion in the adult colon relies on luminal CFTR, which is a cAMP-regulated Cl- channel and a regulator of other transport proteins. As a consequence, mutations in CFTR result in both impaired Cl- secretion and enhanced Na+ absorption in the colon of cystic fibrosis (CF) patients. Ca2+- and cAMP-activated basolateral K+ channels support both secretion and absorption of electrolytes and work in concert with additional regulatory proteins, which determine their functional and pharmacological profile. Knowledge of the mechanisms of electrolyte transport in the colon enables the development of new strategies for the treatment of CF and secretory diarrhea. It will also lead to a better understanding of the pathophysiological events during inflammatory bowel disease and development of colonic carcinoma.
Resumo:
The main objectives of this dissertation were: (i) to develop experimental and analytical procedures to quantify different physico-chemical properties of the ultra-thin (~ 100 nm) active layers of reverse osmosis (RO) and nanofiltration (NF) membranes and their interactions with contaminants; (ii) to use such procedures to evaluate the similarities and differences between the active layers of different RO/NF membranes; and (iii) to relate characterization results to membrane performance. Such objectives were motivated by the current limited understanding of the physico-chemical properties of active layers as a result of traditional characterization techniques having limitations associated with the nanometer-scale spatial resolution required to study these ultra-thin films. Functional groups were chosen as the main active layer property of interest. Specific accomplishments of this study include the development of procedures to quantify in active layers as a function of pH: (1) the concentration of both negatively and positively ionized functional groups; (2) the stoichiometry of association between ions (i.e., barium) and ionized functional groups (i.e., carboxylate and sulfonate); and (3) the steric effects experienced by ions (i.e., barium). Conceptual and mathematical models were developed to describe experimental results. The depth heterogeneity of the active layer physico-chemical properties and interactions with contaminants studied in this dissertation was also characterized. Additionally, measured concentrations of ionized functional groups in the polyamide active layers of several commercial RO/NF membranes were used as input in a simplified RO/NF transport model to predict the rejection of a strong electrolyte (i.e., potassium iodide) and a weak acid (i.e., arsenious acid) at different pH values based on rejection results at one pH condition. The good agreement between predicted and experimental results showed that the characterization procedures developed in this study serve as useful tools in the advancement of the understanding of the properties and structure of the active layers of RO/NF membranes, and the mechanisms of contaminant transport through them.
Resumo:
In conventional fabrication of ceramic separation membranes, the particulate sols are applied onto porous supports. Major structural deficiencies under this approach are pin-holes and cracks, and the dramatic losses of flux when pore sizes are reduced to enhance selectivity. We have overcome these structural deficiencies by constructing hierarchically structured separation layer on a porous substrate using lager titanate nanofibers and smaller boehmite nanofibers. This yields a radical change in membrane texture. The resulting membranes effectively filter out species larger than 60 nm at flow rates orders of magnitude greater than conventional membranes. This reveals a new direction in membrane fabrication.
Resumo:
Ceramic membranes were fabricated by in situ synthesis of alumina nanofibres in the pores of an alumina support as a separation layer, and exhibited a high permeation selectivity for bovine serum albumin relative to bovine hemoglobin (over 60 times) and can effectively retain DNA molecules at high fluxes.