1000 resultados para ELECTROLUMINESCENCE DEVICES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

HigWy efficient DCJTB-doped device was realized by enhanced electron injection and exciton confinement. A fluorine end-capped linear phenylene/oxadiazole oligomer 2,5-bis(4-fluorobiphenyl-4'-yl)-1,3,4-oxadiazole (1) and a trifluoromethyl end-capped oligomer 2,5-bis(4-trifluoromethylbiphenyl-4'-yl)-1,3,4-oxadiazole (2) were designed and incorporated as an electron transporting/hole blocking material in the device structure ITO/NPB (60 mn)/DCJTB:Alq(3) (0.5%, 10 nm)/1 or 2 (20 nm)/Alq(3) (30 mn)/LiF (1 nm)/Al (100 nm). The devices showed highly efficient red luminescence. In particular, the device based on 1 achieved pure red luminescence at 620 run originating from DCJTB, with a narrow FWHI of 65 nm, maximal brightness of 13,300 cd/m(2) at voltage of 20.8 V and current density of ca. 355 mA/cm(2). High current and power efficiencies (> 3.6 cd/A. 1.01m/W) were retained within a wide range of current densities. Our results show efficient and stable DCJTB-doped red electroluminescence could be anticipated for practical applications by taking advantage of the present approaches. The control experiments using BCP were also studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic white-light-emitting devices ( OLEDs) based on a multimode resonant microcavity defined by a pair of dielectric mirrors and metal mirrors were presented. By selective effects of the quarter-wave dielectric stack mirror on mode, white light emission containing three individual narrow peaks of red, green and blue was achieved, and showed weak dependence on the viewing angle. The Commission Internationale De L'Eclairage ( CIE) chromaticity coordinates changed from ( 0.29, 0.37) at 0 degrees to ( 0.31, 0.33) at 40 degrees. Furthermore, the brightness and electroluminescence efficiency of the microcavity OLEDs were enhanced compared with noncavity OLEDs. The maximum brightness reached 1940 cd m(-2) at a current density of 200 mA cm(-2), and the maximum current efficiency and power efficiency are 1.6 cd A(-1) at a current density of 12 mA cm(-2) and 0.41 1m W-1 at a current density of 1.6 mA cm(-2), which are over 1.6 times higher than that of a noncavity OLED.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dependence of the performance of organic light-emitting devices(OLEDs) on the sheet resistance of indium-tin-oxide(ITO) anodes was investigated by measuring the steady state current density brightness voltage characteristics and the electroluminescent spectra. The device with a higher sheet resistance anode shows a lower current density, a lower brightness level, and a higher operation voltage. The electroluminescence(EL) efficiencies of the devices with the same structure but different ITO anodes show more complicated differences. Furthermore, the shift of the light-emitting zone toward the anode was found when an anode with a higher sheet resistance was used. These performance differences are discussed and attributed to the reduction of hole injection and the increase in voltage drop over ITO anode with the increase in sheet resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A bright blue boron complex BPh2(pybm) containing 2-(2-pyridyl)benzimidazole ligand was designed and synthesized by using N, N-bidentate ligand instead of N, O-bidentate one such as 8-quinolinol. For three-layer LED devices with the configuration of ITO/NPB/BPh2(pybm)/Alq(3)/LiF/Al, the white light emission covering the whole visible region from 400 to 750 nm with the maximum brightness of 110 cd/m(2) and the luminous efficiency of 0.8 cd/A was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoluminescence and electroluminescence from a new conjugated dendrimer consisting of three distyrylbenzene units linked by a central nitrogen atom as core and meta-linked biphenyl units as dendrons were investigated. Bright electroluminescence was realized by using bilayer devices with blurred interface, which were fabricated by sequentially spin-coating a neat dendrimer and a dendrimer doped with 2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD). By optimizing the concentration of PBD, the maximum brightness and EL quantum efficiency reach 4100 cd/m(2) and 0.10%, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel soluble rare earth aromatic carboxylates were prepared. The triplet energy level of organic ligand was measured. The photoluminescence properties of the Tb3+ and EU3+ aromatic carboxylates and lifetimes were investigated, which indicated that these rare earth complexes have high quantum efficiency. Because of their excellent solubility, polymer-doping rare earth carboxylates were fabricated as thin Films by spin-coating method and their luminescence properties were studied. Some rare earth organic light-emitting diodes were successfully fabricated which performed high pure color. The maximum luminance of the device of ITO/PVK/PVK :Th (AS)(3)Phen: PBD/PBD/Al is 32 cd(.)m(-2) at 28 V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a blue organic light-emitting device having an emissive layer of 2-(2-hydroxyphenyl)-5-phenyl-1,3,4-oxadiazole (HOXD), that exhibits excited state intramolecular proton transfer (ESIPT). The device had a luminance efficiency of 0.8 cd/A and a maximum brightness of 870 cd/m(2). Electroluminescence spectra revealed a dominating peak at 450 nm and two additional peaks at 480 and 515 nm with a full width at half maximum of 50 nm. Our studies indicate that some EL may originate from the triplet excitation state of the enol form of HOXD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five rare earth complexes (Gd(acae)(3), Gd(TFacaC)(3), Eu(acaC)(3), Eu(TFacaC)(3) and Eu(TFacaC)(3)bipy; acac, acetylacetone; TFacac, 1,1,1-trifluoroacetylacetone; bipy, 2,2'-bipyridyl) were synthesized. By comparing the phosphorescence spectra of Gd(acac)(3) and Gd(TFacac)(3) the effect of the replacement of hydrogen by fluorine was examined. Organic light-emitting devices (OLEDs) based on the corresponding europium complexes as emissive layers were also fabricated by the spin-coating method. The triple-layer-type device with the structure glass substrate/ITO (indium-tin oxide)/PVK [poly(N-vinylcarbazole)]/(PVKEu)-Eu-.(TFacac)(3)bipy:PBD[2-(4-bibipyyl)-5-(4-t-butylbipyl-1,3,4-oxadiazole)]/PBD/Al (aluminum) exhibits a brighter red luminescence than those devices with Eu(acac)(3) and Eu(TFacac)(3) complexes as emissive centers upon applying a d.c. voltage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The triplet energy state of the HTH [HTH: 4,4,5,5,6,6,6-heptafluoro-1-(2-thienyl) hexane-1,3-dione] ligand was measured to be 20 400 cm(-1), which indicated that Sm(HTH)(3) phen (phen: 1,10-phenanthroline) is a good complex to produce strong PL intensity and high fluorescence yield. Electroluminescent (EL) devices using the Sm( HTH) 3 phen complex as the emissive center were fabricated by vapor deposition and spin-coating methods. The relative intensity of the EL spectra changed compared to the photoluminescence (PL) spectrum, which suggested that the luminescence mechanisms of PL and EL have differences. A luminance of 9 cd m(-2) and a higher brightness of 21 cd m(-2) were obtained from the devices ITO/TPD (40 nm)/ Sm( HTH)(3) phen (50 nm)/ PBD (30 nm)/ Al (200 nm) and ITO/PVK (40 nm)/ PVK : Sm( HTH)(3) phen (2.5 wt%, 50 nm)/ PBD (30 nm)/ Al (200 nm), respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electroluminescent (EL) devices based on a soluble complex Tb(MDP)(3) [Tris-(monododecyl phthalate)Terbium] doped with poly (N-vinylcarbazole) (PVK), (2-(4-biphenyl)-5-(4-t-butylphenyl)-1,3,4-oxadiazole) (PBD) were fabricated. The device structures of ITO/PVK/PVK:PBD:Tb(MDp)(2)/Aiq(3)/Al and ITO/PVK:PBD:Tb(MDP)(3)/Alq(3)/Al were employed. The Tb(MDP), as emissive layer was spin-coated. The EL cell exhibited characteristic emission of terbium ion. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We determine the mobility of positive and negative charge carriers in a soluble green-emitting alternating block copolymer with, a methoxy bi-subsbituted conjugated segment. The negative charge carrier mobility of 6 x 10(-11) cm(2)/V.s is directly determined using space-charge-limited current analytical expressions. Positive charge carrier transport is also space-charge-limited, with a mobility of I x 10(-8) cm(2)/V.s. The electron trap distribution is exponential, with a characteristic energy of similar to 0.12 eV. A hole trap with energy similar to 0.4 eV was observed. This copolymer is used as emissive material in organic light-emitting diodes that present brightness of similar to 900 cd/m(2) at 12.5 V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infrared emission at 1.54 mu m excited optically and electrically from an erbium organic compound tris(acetylacetonato)(1,10-phenanthroline) erbium [Er(acac)(3)(phen)] is observed. The rare-earth complex is dispersed into a polymer matrix of poly(N-vinylcarbazole) (PVK) to fabricate an electroluminescent (EL) device with an ITO/PVK:Er(acac)(3)(phen)/Al:Li/Ag structure, where ITO represents indium-tin-oxide-coated glass. The device shows infrared EL emission at 1.54 mu m, which suggests a simple and cheap method to obtain a light source for 1.54-mu m-wavelength devices in optical communications. (C) 2000 American Institute of Physics. [S0021-8979(00)00301-7].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electroluminescent devices using a ternary europium complex Eu(DBM)(3)(hhpy)(2) (dibenzoylmethane, DBM; hexahydro pyridine, hhpy) as an emitting layer, poly(vinyl-carbazole) (PVK) as a hole-transporting material and tris-(8-hydroxyquinoline) aluminum (Alq(3)) as an electron-transporting material have been fabricated. When only using Eu(DBM)(3)(hhpy)(2) as the emitting layer, luminance of 2.52 cd/m(2) with pure Eu3+ EL emissions from devices is achieved. Introducing a hole transporting material PVK and an electron transporting material 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxidiazole (PBD) in the emitting layer, luminance of 100cd/m(2) is achieved, and the eletroluminescence efficiency is enhanced by about two orders of magnitude. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By comparing the phosphorescence spectra of Gd(acac)(3) (acac=acetylacetone), Gd(TFacac)3 (TFacac=1,1,1-trifluoroacetylacetone), the effects of fluorine replacement of hydrogen on the triplet state energy of the ligands were revealed. Fluorine can lower the triplet state energy of Hacac and make it more suitable for energy transfer towards the D-5(4) state of terbium. Organic electroluminescent devices (OELDs) with the corresponding trivalent terbium complexes as emissive layers were fabricated. Triple-layer-type devices with a structure of glass substrate/ITO (indium tin oxide)/PVK [poly(N-vinylcarbazole)]/PVK : Tb complex: PBD [2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole]/PBD/Al exhibit bright green luminescence upon applying a dc voltage. The luminance of a device with Tb(TFacac)(3)phen (1,10-phenanthroline) and Tb( TFacac) 3 as emissive layer is higher than that of the corresponding devices with Tb(acac)(3)(phen) and Tb(acac)(3) as emissive layers. The EL device with Tb(TFacac)(3)(phen) as emitter exhibits characteristic emission of Tb3+ ions with a maximum luminance of 58 cd m(-2) at 25 V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An Electroluminescent device with PVK film doped with Eu(TTA)(3) Phen and PBD was fabricated. The device structure of glass substrate/indium-tin-oxide/PPV/PVK : Eu(TTA)3 Phen : PBD/Alq(3)/Al was employed. A sharply red electroluminescence with a maximum luminance of 56. 8 cd/m(2) at 48 V was achieved.