930 resultados para EFFICIENCY OF PROTEIN UTILIZATION
Resumo:
The $\beta$-adrenergic receptor ($\beta$AR), which couples to G$\sb{\rm s}$ and activates adenylylcyclase, has been a prototype for studying the activation and desensitization of G-protein-coupled receptors. The main objective of the present study is to elucidate the molecular mechanisms of protein kinase-mediated desensitization and internalization of the $\beta$AR.^ Activation of cAPK or PKC causes a rapid desensitization of $\beta$AR stimulation of adenylylcyclase in L cells, which previous studies suggest involves the cAPK/PKC consensus phosphorylation site in the third intracellular loop of the $\beta$AR, RRSSK$\sp{263}$. To determine the role of the individual serines in the cAPK- and PKC-meditated desensitizations, wild type (WT) and mutant $\beta$ARs containing the substitutions, Ser$\sp{261} \to$ A, Ser$\sp{262} \to$ A, Ser$\sp{262} \to$ D, and Ser$\sp{261/262} \to$ A, were constructed and stably transfected into L cells. The cAPK-mediated desensitization was decreased 70-80% by the Ser$\sp{262} \to$ A, Ser$\sp{262} \to$ D, and the Ser$\sp{261/262} \to$ A mutations, but was not altered by the Ser$\sp{261} \to$ A substitution, demonstrating that Ser$\sp{262}$ was the primary site of the cAPK-induced desensitization. The PMA/PKC-induced desensitization was unaffected by either of the single serine to alanine substitutions, but was reduced 80% by the double serine to alanine substitution, suggesting that either serine was sufficient to confer the PKC-mediated desensitization. Coincident stimulation of cAPK and PKC caused an additive desensitization which was significantly reduced (80%) only by the double substitution mutation. Quantitative evaluation of the coupling efficiencies and the GTP-shift of the WT and mutant receptors demonstrated that only one of the mutants, Ser$\sp{262} \to$ A, was partially uncoupled. The Ser$\sp{262} \to$ D mutation did not significantly uncouple, demonstrating that introducing a negative charge did not appear to mimic the desensitized state of the receptor.^ To accomplish the in vivo phosphorylation of the $\beta$AR, we used two epitope-modified $\beta$ARs, hemagglutinin-tagged $\beta$AR (HA-$\beta$AR) and 6 histidine-tagged $\beta$AR (6His-$\beta$AR), for a high efficiency purification of the $\beta$AR. Neither HA-$\beta$AR nor 6His-$\beta$AR altered activation and desensitization of the $\beta$AR significantly as compared to unmodified wild type $\beta$AR. 61% recovery of ICYP-labeled $\beta$AR was obtained with Ni-NTA column chromatography.^ The truncation 354 mutant $\beta$AR(T354), lacking putative $\beta$ARK site(s), displayed a normal epinephrine stimulation of adenylylcyclase. Although 1.0 $\mu$M epinephrine induced 60% less desensitization in T354 as compared to wild type $\beta$AR, 1.0 $\mu$M epinephrine-mediated desensitization in T354 was 35% greater than PGE$\sb1$-mediated desensitization, which is essentially identical in both WT and T354. These results suggested that sequences downstream of residue 354 may play a role in homologous desensitization and that internalization may be attributed to the additional desensitization besides the cAMP mechanism in T354 $\beta$AR. (Abstract shortened by UMI.) ^
Resumo:
The budding yeast multi-K homology domain RNA-binding protein Scp160p binds to > 1000 messenger RNAs (mRNAs) and polyribosomes, and its mammalian homolog vigilin binds transfer RNAs (tRNAs) and translation elongation factor EF1alpha. Despite its implication in translation, studies on Scp160p's molecular function are lacking to date. We applied translational profiling approaches and demonstrate that the association of a specific subset of mRNAs with ribosomes or heavy polysomes depends on Scp160p. Interaction of Scp160p with these mRNAs requires the conserved K homology domains 13 and 14. Transfer RNA pairing index analysis of Scp160p target mRNAs indicates a high degree of consecutive use of iso-decoding codons. As shown for one target mRNA encoding the glycoprotein Pry3p, Scp160p depletion results in translational downregulation but increased association with polysomes, suggesting that it is required for efficient translation elongation. Depletion of Scp160p also decreased the relative abundance of ribosome-associated tRNAs whose codons show low potential for autocorrelation on mRNAs. Conversely, tRNAs with highly autocorrelated codons in mRNAs are less impaired. Our data indicate that Scp160p might increase the efficiency of tRNA recharge, or prevent diffusion of discharged tRNAs, both of which were also proposed to be the likely basis for the translational fitness effect of tRNA pairing.
Resumo:
The level and fate of hMSH3 (human MutS homolog 3) were examined in the promyelocytic leukemia cell line HL-60 and its methotrexate-resistant derivative HL-60R, which is drug resistant by virtue of an amplification event that spans the dihydrofolate reductase (DHFR) and MSH3 genes. Nuclear extracts from HL-60 and HL-60R cells were subjected to an identical, rapid purification protocol that efficiently captures heterodimeric hMutSα (hMSH2⋅hMSH6) and hMutSβ (hMSH2⋅hMSH3). In HL-60 extracts the hMutSα to hMutSβ ratio is roughly 6:1, whereas in methotrexate-resistant HL-60R cells the ratio is less than 1:100, due to overproduction of hMSH3 and heterodimer formation of this protein with virtually all the nuclear hMSH2. This shift is associated with marked reduction in the efficiency of base–base mismatch and hypermutability at the hypoxanthine phosphoribosyltransferase (HPRT) locus. Purified hMutSα and hMutSβ display partial overlap in mismatch repair specificity: both participate in repair of a dinucleotide insertion–deletion heterology, but only hMutSα restores base–base mismatch repair to extracts of HL-60R cells or hMSH2-deficient LoVo colorectal tumor cells.
Resumo:
Maintenance of lasting synaptic efficacy changes requires protein synthesis. We report here a mechanism that might influence translation control at the level of the single synapse. Stimulation of metabotropic glutamate receptors in hippocampal slices induces a rapid protein kinase C-dependent translocation of multifunction kinase p90rsk to polyribosomes; concomitantly, there is enhanced phosphorylation of at least six polyribosome binding proteins. Among the polyribosome bound proteins are the p90rsk-activating kinase ERK-2 and a known p90rsk substrate, glycogen synthase kinase 3β, which regulates translation efficiency via eukaryotic initiation factor 2B. Thus metabotropic glutamate receptor stimulation could induce synaptic activity-dependent translation via translocation of p90rsk to ribosomes.
Resumo:
Translational control has recently been recognized as an important facet of adaptive responses to various stress conditions. We describe the adaptation response of the yeast Saccharomyces cerevisiae to the loss of one of two mechanisms to target proteins to the secretory pathway. Using inducible mutants that block the signal recognition particle (SRP) pathway, we find that cells demonstrate a physiological response to the loss of the SRP pathway that includes specific changes in global gene expression. Upon inducing the loss of the SRP pathway, SRP-dependent protein translocation is initially blocked, and cell growth is considerably slowed. Concomitantly, gene expression changes include the induction of heat shock genes and the repression of protein synthesis genes. Remarkably, within hours, the efficiency of protein sorting improves while cell growth remains slow in agreement with the persistent repression of protein synthesis genes. Our results suggest that heat shock gene induction serves to protect cells from mislocalized precursor proteins in the cytosol, whereas reduced protein synthesis helps to regain efficiency in protein sorting by reducing the load on the protein translocation apparatus. Thus, we suggest that cells trade speed in cell growth for fidelity in protein sorting to adjust to life without SRP.
Resumo:
The electronic properties of hematite were investigated by means of synchrotron radiation photoemission (SR-PES) and X-ray absorption spectroscopy (XAS). Hematite samples were exposed to trimethyl aluminum (TMA) pulses, a widely used Al-precursor for the atomic layer deposition (ALD) of Al2O3. SR-PES and XAS showed that the electronic properties of hematite were modified by the interaction with TMA. In particular, the hybridization of O 2p states with Fe 3d and Fe 4s4p changed upon TMA pulses due to electron inclusion as polarons. The change of hybridization correlates with an enhancement of the photocurrent density due to water oxidation for the hematite electrodes. Such an enhancement has been associated with an improvement in charge carrier transport. Our findings open new perspectives for the understanding and utilization of electrode modifications by very thin ALD films and show that the interactions between metal precursors and substrates seem to be important factors in defining their electronic and photoelectrocatalytic properties.
Resumo:
The pathogenesis of several neurodegenerative diseases, including Alzheimer's disease, has been linked to a condition of oxidative and nitrosative stress, arising from the imbalance between increased reactive oxygen species (ROS) and reactive nitrogen species (RNS) production and antioxidant defences or efficiency of repair or removal systems. The effects of free radicals are expressed by the accumulation of oxidative damage to biomolecules: nucleic acids, lipids and proteins. In this review we focused our attention on the large body of evidence of oxidative damage to protein in Alzheimer's disease brain and peripheral cells as well as in their role in signalling pathways. The progress in the understanding of the molecular alterations underlying Alzheimer's disease will be useful in developing successful preventive and therapeutic strategies, since available drugs can only temporarily stabilize the disease, but are not able to block the neurodegenerative process. © 2007 Springer-Verlag.
Resumo:
Using microarrays to probe protein-protein interactions is becoming increasingly attractive due to their compatibility with highly sensitive detection techniques, selectivity of interaction, robustness and capacity for examining multiple proteins simultaneously. The major drawback to using this approach is the relatively large volumes and high concentrations necessary. Reducing the protein array spot size should allow for smaller volumes and lower concentrations to be used as well as opening the way for combination with more sensitive detection technologies. Dip-Pen Nanolithography (DPN) is a recently developed technique for structure creation on the nano to microscale with the capacity to create biological architectures. Here we describe the creation of miniaturised microarrays, 'mesoarrays', using DPN with protein spots 400× smaller by area compared to conventional microarrays. The mesoarrays were then used to probe the ERK2-KSR binding event of the Ras/Raf/MEK/ERK signalling pathway at a physical scale below that previously reported. Whilst the overall assay efficiency was determined to be low, the mesoarrays could detect KSR binding to ERK2 repeatedly and with low non-specific binding. This study serves as a first step towards an approach that can be used for analysis of proteins at a concentration level comparable to that found in the cellular environment.
Resumo:
Carbon capture and storage (CCS) in the oil and water industries is becoming common and a significant consumer of energy typically requiring 150–450 °C and or several hundred bar pressure [1] particularly in geological deposition. A biological carbon capture and conversion has been considered in conventional anaerobic digestion processes. The process has been utilised in biological mixed culture, where acetoclastic bacteria and hydrogenophilic methanogens play a major key role in the utilisation of carbon dioxide. However, the bio catalytic microorganisms, hydrogenophilic methanogens are reported to be unstable with acetoclastic bacteria. In this work the biochemical thermodynamic efficiency was investigated for the stabilisation of the microbial process in carbon capture and utilisation. The authors observed that a thermodynamic efficiency of biological carbon capture and utilisation (BCCU) had 32% of overall reduction in yield of carbon dioxide with complimentary increase of 30% in yield of methane, while the process was overall endothermic. Total consumption of energy (≈0.33 MJ l−1) was estimated for the carbonate solubility (0.1 mol l−1) in batched BCCU. This has a major influence on microbial composition in the bioreactor. This thermodynamic study is an essential tool to aid the understanding of the interactions between operating parameters and the mixed microbial culture.
Resumo:
The protein lysate array is an emerging technology for quantifying the protein concentration ratios in multiple biological samples. It is gaining popularity, and has the potential to answer questions about post-translational modifications and protein pathway relationships. Statistical inference for a parametric quantification procedure has been inadequately addressed in the literature, mainly due to two challenges: the increasing dimension of the parameter space and the need to account for dependence in the data. Each chapter of this thesis addresses one of these issues. In Chapter 1, an introduction to the protein lysate array quantification is presented, followed by the motivations and goals for this thesis work. In Chapter 2, we develop a multi-step procedure for the Sigmoidal models, ensuring consistent estimation of the concentration level with full asymptotic efficiency. The results obtained in this chapter justify inferential procedures based on large-sample approximations. Simulation studies and real data analysis are used to illustrate the performance of the proposed method in finite-samples. The multi-step procedure is simpler in both theory and computation than the single-step least squares method that has been used in current practice. In Chapter 3, we introduce a new model to account for the dependence structure of the errors by a nonlinear mixed effects model. We consider a method to approximate the maximum likelihood estimator of all the parameters. Using the simulation studies on various error structures, we show that for data with non-i.i.d. errors the proposed method leads to more accurate estimates and better confidence intervals than the existing single-step least squares method.
Clustering of Protein Structures Using Hydrophobic Free Energy And Solvent Accessibility of Proteins
Resumo:
The aim of this study was to determine the collection efficiency of ultrafine particles into an impinger fitted with a fritted nozzle tip as a means to increase contact surface area between the aerosol and the liquid. The influence of liquid sampling volume, frit porosity and the nature of the sampling liquid was explored and it was shown that all impact on the collection efficiency of particles smaller than 220 nm. Obtained values for overall collection efficiency were substantially higher (~30–95%) than have been previously reported, mainly due to the high deposition of particles in the fritted nozzle tip, especially in case of finer porosity frits and smaller particles. Values for the capture efficiency of the solvent alone ranged from 20 to 45%, depending on the type and the volume of solvent. Additionally, our results show that airstream dispersion into bubbles improves particle trapping by the liquid and that there is a difference in collection efficiencies based on the nature and volume of the solvent used.