740 resultados para EDIBLE SEAWEEDS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Details are given of farming methods developed by the SEAFDEC Aquaculture Department for 3 different seaweeds: 1) Bottom line culture method for Kappaphycus; 2) Pond culture of Gracilaria; and, 3) Gracilariopsis bailinae, the new seaweed on the block.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The edible blue-green alga, Nostoc sphaeroides Kutzing, is able to form microcolonies and spherical macrocolonies. It has been used as a potent herbal medicine and dietary supplement for centuries because of its nutraceutical and pharmacological benefits. However, limited information is available on the development of the spherical macrocolonies and the environmental factors that affect their structure. This report described the morphogenesis of N. sphaeroides from single trichomes to macrocolonies. During the process, most structural features of macrocolonies of various sizes were dense maculas, rings, the compact core and the formation of liquid core; and the. laments within the macrocolonies showed different lengths and arrays depending on the sizes of macrocolonies. Meanwhile temperature and light intensity also strongly affected the internal structure of macrocolonies. As microcolonies further increased in size to form 30 mm macrocolonies, the colonies differentiated into distinct outer, middle and inner layers. The. laments of the outer layer showed higher maximum photosynthetic rates, higher light saturation point, and higher photosynthetic effciency than those of the inner layer; whereas the. laments of the inner layer had a higher content of chlorophyll a and phycobiliproteins than those of the outer layer. The results obtained in this study were important for the mass cultivation of N. sphaeroides as a nutraceutical product. (c) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intertidal seaweeds experience periodical desiccation and rehydration to different extents due to the tidal cycles and their vertical distributions. Their photosynthetic recovery process during the rehydration may show different patterns among the seaweeds from different zonations or depths at intertidal zone. In this study 12 species of seaweeds collected from the upper, middle, lower and sublittoral zones were examined. The relationship of the photosynthetic recovery to vertical distribution was assessed by comparing their patterns of photosynthetic and respiratory performances after rehydration following desiccation. Both the photosynthesis and dark respiration declined during emersion, showing certain degrees of recovery after re-immersion into seawater for most species, but the extents were markedly different from one species to the other. The species from upper intertidal zone after being rehydrated for 1 hour, following 2 hours of desiccation, achieved 100 % recovery of their initial physiological activity, while most of the lower or sublittoral species did not achieve full recovery. It is the ability to withstand desiccation stress (fast recovery during rehydration), but not that to avoid desiccation (water retaining ability) that determines the distribution of intertidal seaweeds. Such physiological behavior during rehydration after desiccation reflects the adaptive strategy of intertidal seaweeds against desiccation and their capability of primary production in the process of rehydration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cyanobacterium Nostoc commune Vaucher produces quite complex extracellular polysaccharides. The cyanobacterium is nitrogen fixing, and on growing the cyanobacterium in media with and without nitrogen, different types of extracellular polysaccharides were obtained. These were also different from the polysaccharides present in N. commune collected in the field. High pH anion exchange chromatography (HPAEC) of weak acid hydrolysates of the culture-grown material demonstrated that, in this case, HPAEC was useful for comparison of the different polymers. The main differences between the polymers from the field group and the culture-grown samples were the presence of substantial amounts of arabinose, 2-O-methylglucose, and glucuronic acid in the latter. Methylation studies also revealed a difference in the branching points on the glucose units between the field and cultured samples, being 1,4,6 for the first and 1,3,6 for the latter. The field acidic fraction gave, on weak acid hydrolysis and separation on BioGel P2 and HPAEC, 12 oligosaccharide fractions that were isolated and studied by different mass spectroscopy techniques. The structures of the oligosaccharides were determined, and two different series that can originate from two repeating pentamers were identified: GlcAl-4/6GlcM1-4Ga11-4Glc1-4Xyl and GlcAl-4/6Glc1-4Ga11-4Glc1-4Xyl. The difference between these oligosaccharides lies in the methyl substituent on carbon 2 of the glucose unit next to the nonreducing glucuronic acid unit. The polysaccharides from field material were shown to have a strong effect on the complement system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hot water-soluble polysaccharides woe extracted from field colonies and suspension cultures of Nostoc commune Vaucher, Nostoc flagelliforme Berkeley et Curtis, and Nostoc sphaeroides Kutzing. Excreted extracellular polymeric substances (EPS) were isolated from the media in which the suspension cultures were grown. The main monosaccharides of the field colony polysaccharides from the three species were glucose, xylose, and galactose, with an approximate ratio of 2:1:1. Mannose was also present, but the levels varied among the species, and arabinose appeared only in N. flagelliforme. The compositions of the cellular polysaccharides and EPS from suspension cultures were more complicated than those of the field samples and varied among the different species. The polysaccharides from the cultures of N. flagelliforme had a relatively simple composition consisting of mannose, galactose, glucose, and glucuronic acid, but no xylose, as was found in the field colony polysaccharides. The polysaccharides from cultures of N. sphaeroides contained glucose (the major component), rhamnose, fucose, xylose, mannose, and galactose. These same sugars were present in the polysaccharides from cultures of N. commune, with xylose as the major component. Combined nitrogen in the media had no qualitative influence on the compositions of the cellular polysaccharides but affected those of the EPS of N. commune and N. flagelliforme. The EPS of N. sphaeroides had a very low fetal carbohydrate content and thus was not considered to be polysaccharide in nature. The field colony polysaccharides could be separated by anion exchange chromatography into neutral and acidic fractions having similar sugar compositions. Preliminary linkage analysis showed that 1) xylose, glucose, and galactose were 1-->4 linked, 2) mannose, galactose, and xylose occurred as terminal residues, and 3) branch points occurred in glucose as 1-->3,4 and 1-->3,6 linkages and in xylose as a 1-->3,4 linkage. The polymer preparations from field colonies had higher kinematic viscosities than those from corresponding suspension cultures. The high viscosities of the polymers suggested that they might DE suitable for industrial uses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nostoc flagelliforme, which is distributed in arid or semiarid steppes of the west and west-northern parts of China, has been used by the Chinese as a food delicacy and for its herbal values for hundreds of years. However, the resource is being over-exploited and is diminishing, while the market demands are increasing with the economic growth. This review deals mainly with the Chinese studies on the ecology, physiology, reproduction, morphology and culture of this species in an attempt to promote research and development of its cultivation technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has become clear that the last 15-20 years that the immediate effect of a wide range of environmental stresses,and of infection,on vascular plants is to increase the information of reactive oxygen species(ROS) and to impose oxidative stress on the cells.Since 1994,sufficient examples similar responses in a broad range of marine macroalgae have been decribed to show that reactive oxygen metabolism also underlies the mechanisms by which seaweeds respond(and become resistant) to stress and infection.Desiccation,freezing,low temperatures,high light,ultraviolet radiation,and heavy metals all tend to result in a gradual and continued buildup of ROS because photosynthesis is inhibited and excess energy results in the formation of singlet oxygen.The response to other stresses (infection or oligosaccharides which signal that infection is occurring,mechanical stress,hyperosmotic shock) is quite different-a more rapid and intence,but short-lived production of ROS ,discribed as an "oxidative burst"-which is attributed to activation of NADPHoxidases in the plasma membrane.Seaweed species that are able to survive such stresses or resist infection have the capacity to remove the ROS through a high cellular content of antioxidant compounds,or a high activity of antioxidant enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jussiaea repens L. (JRL) is an edible medicinal plant and is also used as a vegetable by the local people in southwestern China. The crude extract and its four fractions derived from JRL were evaluated for the 1,1-diphenyl-2-picrylhydrazyl radical-scavenging ability, hydroxyl radical-scavenging capacity and the potassium ferricyanide reduction property. The ethyl acetate-soluble fraction (EAF) and EAF6 (a subfraction derived from EAF) were the most valuable fraction and subfraction, respectively. Furthermore, bioactivity-guided chromatographic fractionation revealed that three pure compounds greatly contributed to the antioxidant activities. Qualitative and quantitative analyses of the major antioxidant constituents in the extract were systematically conducted by NMR, mass spectral analyses and RP-HPLC. The result demonstrated that rosmarinic acid (2.00 mg g(-1) JRL dry weight) quercetin 3-O-beta-D-glucopyranoside (9.88 mg g(-1) JRL dry weight), and kaempferol 3-O-beta-D-glucopyranoside (1.85 mg g(-1) JRL dry weight) were the major antioxidative constituents in JRL. These compounds are reported for the first time from this plant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipophilic extracts from 16 species of seaweeds collected along the Qingdao coastline were screened and evaluated for their antioxidant activities (AA) using the beta-carotene-linoleate assay system. The diethyl ether soluble extracts of all selected seaweeds exhibited various degrees of antioxidative efficacy in each screen. The highest antioxidant capacities among the tested samples were observed for Rhodomela confervoides and Symphyocladia latiuscula and were comparable with that of the well-known antioxidant butylated hydroxytoluene and greater than that of propyl gallate. The lipophilic content of all 16 samples and the chemical composition of 4 selected seaweeds, R. confervoides and S. latiuscula, which had higher AA, Laminaria japonica, which had intermediate AA, and Plocamium telfairiae, which had lower AA, were analyzed by gas chromatography and gas chromatography-mass spectrometry, respectively. Fatty acids and alkanes were found. The present data indicated an increase in antioxidative property with increasing content of unsaturated fatty acid. The result of this study suggests that seaweeds can be considered as a potential source for the extraction of lipophilic antioxidants, which might be used as dietary supplements or in production in the food industry. This is the first report on the antioxidant activities of lipophilic extracts from seaweeds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accumulations of selenium in kelp Laminaria japonica cultured in seawater was achieved by adding selenite (Na2SeO3) with or without N-P (NaNO3 + NaH2PO4) nutrients at different concentrations. Biotransformation of selenium in the kelp was investigated through measuring the selenium of biological samples and different biochemical fractionations. The results showed that the optimal selenite-enrichment concentration is 200 mg L-1, which can allow the kelp to accumulate a total selenium content from 0.51 +/- 0.15 to 26.23 +/- 3.12 mug g(-1) of fresh weight (fw). Selenium composition analysis of kelp (control group) showed that selenium is present as organic selenium, which is up to 86.22% of the total selenium, whereas inorganic selenium is barely 4.85%. When L. japonica was exposed for 56 h in seawater containing 200 mg L-1 Na2SeO3, the organic selenium was 16.70 mug g(-1) of fw (68.23%) and inorganic selenium was 4.71 mug g(-1) of fw (19.26%). The capability of accumulation of selenium was further enhanced by adding N-P nutrients to the selenite-enriched medium. Total selenium is increased to be 33.65 mug g(-1) of fw at optimal concentration of N-P nutrient (150 mg L-1 NaNO3 and 25 mg L-1 NaH2PO4), whereas the inorganic selenium was not increased and remained at 4.597 mug g(-1) of fw (13.36%), and the increased part of selenium was organic selenium. This implied that kelp L. japonica could effectively transform inorganic selenium into organic selenium through metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chlorophyll fluorescence kinetics of marine red alga Grateloupia turutunt Yamada, green alga Ulva pertusa Kjellm and brown alga Laminaria japonica Aresch during natural sustained dehydration were monitored and investigated. The pulse amplified modulation (PAM) system was used to analyze the distinct fluorescence parameters during thallus dehydration. Results proved that the fluorescence kinetics of different seaweed all showed three patterns of transformation with sustained water loss. These were: 1) peak kinetic pattern (at the early stage of dehydration fluorescence enhanced and quenched subsequently, representing a normal physiological state). 2) plateau kinetic pattern (with sustained water loss fluorescence enhanced continuously but quenching became slower, finally reaching its maximum). 3) Platform kinetic pattern (fluorescence fell and the shape of kinetic curve was similar to plateau kinetic pattern). A critical water content (CWC) could be found and defined as the percentage of water content just prior to the fluorescence drop and to be a significant physiological index for evaluation of plant drought tolerance. Once thallus water content became lower than this value the normal peak pattern can not be recovered even through rehydration, indicating an irreversible damage to the thylakoid membrane. The CWC value corresponding to different marine species were varied and negatively correlated with their desiccation tolerance, for example. Laminaria japonica had the highest CWC value (around 90%) and the lowest dehydration tolerance of the three. In addition, a fluorescence "burst" was found only in red algae during rehydration. The different fluorescence parameters F-o, F-v and F-v, F-m were measured and compared during water loss. Both F-o and F-v increased in the first stage of dehydration but F-v/F-m. kept almost constant. So the immediate response of in vivo chlorophyll fluorescence to dehydration was an enhancement. Later with sustained dehydration F-o increased continuously while F-v decreased and tended to become smaller and smaller. The major changes in fluorescence (including fluorescence drop during dehydration and the burst during rehydration) were all attributed to the change in F-o instead of F-v This significance of F-o indicates that it is necessary to do more research on F-o as well as on its relationship with the state of thylakoid membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of iodine in various biological macromolecules in Sargassum kjellmanianum was studied using neutron activation analysis combined with chemical and biochemical separation techniques. The results indicate that iodine is mainly bound with protein, part of iodine with pigment and polyphenol, and little with polysaccharides, such as algin, fucoidan and cellulose. This result is significant for the mechanism of enriching iodine of algae and utilization of alga iodine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal analysis and thermolysis kinetics of three kinds of seaweeds and fir wood (M. glyptostriboides Huet Cheng), a kind of typical land plant, had been conducted. The results showed that thermal stability follows the order of Grateloupia filicina < Ulva lactuca < Dictyopteris divaricata < fir wood. A notable difference on heat flow between seaweeds and fir wood during thermolysis was that the former were mainly connected with exothermic processes at relatively lower temperature regimes. while the latter was connected with an apparent endotherm at a relatively higher temperature regime followed by a maximum exothermic peak. This suggested that the heat coupling might be realized if co-thermolysis of seaweeds and fir wood were carried out. The main devolatilization phase of each seaweed could be described by Avrami-Erofeev equation, which indicated that thermolysis of seaweeds follows the mechanism of random nucleation and nuclei growth, whereas that of fir wood by Z-L-T equation and its thermolysis mechanism was three-dimensional diffusion. The activation energies calculated for both seaweeds and fir wood increase as conversion increases. However, those for the former have wider distribution. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical species of iodine in seven marine algae Codium fragile, Ulva pertusa, Monostroma nitidum, Gracilaria confervoides, Sargassum Kjellmanianum, Dictyopteris divaricata and Laminaria japonica were studied using neutron activation analysis combined with chemical separation. The contents of total iodine, water-soluble iodine, soluble organic iodine, I- and IO3- were determined. The results indicate that the chemical species and contents of iodine in various algae are remarkably different. The highest iodine content of 734 mg/kg (wet basis) was found in Laminaria japonica, with 99.2% of the total iodine being water soluble. The iodine contents of the other six algae are lower and soluble iodine makes up 16-41% of the total. In the aqueous leachate, iodine is mainly I-, which amounts to 61-93% of total water-soluble iodine; the percentages of organic iodine making up 5.5-37.4%, while the contents of IO3- are the lowest, 1.4-4.5%. This result suggests that the mechanism of iodine enrichment is different for various algae and that its bioavailability varies as well. (C) 1997 Elsevier Science B.V.