966 resultados para ECTOPIC RECOMBINATION
Resumo:
Paul Howard-Flanders et al proposed a molecular model of RecA-mediated recombination reaction six years ago. How does this model stand at present? In answering this question, we focus on two leading ideas of the original model, namely the proposal of the coaxial arrangement of the aligned DNA molecules within helical RecA filaments and the proposal of the ATP independence of the pairing stage of the recombination reaction. Results obtained after the model was proposed are reviewed and compared with these original assumptions and postulates of the model. EM visualization of recombining DNA molecules, studies of the energetics of the RecA-mediated recombination reaction and biochemical analysis of deproteinized joint molecules are fully consistent with a triple-stranded DNA arrangement during the RecA-mediated recombination reaction and demonstrate the ATP independence of the pairing stage of the reaction.
Resumo:
In contrast with mammals and birds, most poikilothermic vertebrates feature structurally undifferentiated sex chromosomes, which may result either from frequent turnovers, or from occasional events of XY recombination. The latter mechanism was recently suggested to be responsible for sex-chromosome homomorphy in European tree frogs (Hyla arborea). However, no single case of male recombination has been identified in large-scale laboratory crosses, and populations from NW Europe consistently display sex-specific allelic frequencies with male-diagnostic alleles, suggesting the absence of recombination in their recent history. To address this apparent paradox, we extended the phylogeographic scope of investigations, by analyzing the sequences of three sex-linked markers throughout the whole species distribution. Refugial populations (southern Balkans and Adriatic coast) show a mix of X and Y alleles in haplotypic networks, and no more within-individual pairwise nucleotide differences in males than in females, testifying to recurrent XY recombination. In contrast, populations of NW Europe, which originated from a recent postglacial expansion, show a clear pattern of XY differentiation; the X and Y gametologs of the sex-linked gene Med15 present different alleles, likely fixed by drift on the front wave of expansions, and kept differentiated since. Our results support the view that sex-chromosome homomorphy in H. arborea is maintained by occasional or historical events of recombination; whether the frequency of these events indeed differs between populations remains to be clarified.
Resumo:
Intraoperative examination of sentinel axillary lymph nodes can be done by imprint cytology, frozen section, or, most recently, by PCR-based amplification of a cytokeratin signal. Using this technique, benign epithelial inclusions, representing mammary tissue displaced along the milk line, will likely generate a positive PCR signal and lead to a false-positive diagnosis of metastatic disease. To better appreciate the incidence of ectopic epithelial inclusions in axillary lymph nodes, we have performed an autopsy study, examining on 100 μm step sections 3,904 lymph nodes obtained from 160 axillary dissections in 80 patients. The median number of lymph nodes per axilla was 23 (15, 6, and 1 in levels 1, 2, and 3, respectively). A total of 30,450 hematoxylin-eosin stained slides were examined, as well as 8,825 slides immunostained with pan-cytokeratin antibodies. Despite this meticulous work-up, not a single epithelial inclusion was found in this study, suggesting that the incidence of such inclusions is much lower than the assumed 5% reported in the literature.
Resumo:
The population structure of Staphylococcus aureus is generally described as highly clonal and is consequently subdivided into several clonal complexes (CCs). Recent data suggested that recombination might occur more frequently within than among CCs. To test this hypothesis as well as to understand how genetic diversity is created in S. aureus, we analyzed a collection of 182 isolates with MLST and five highly variable core adhesion (ADH) genes. As expected the polymorphism of ADH genes was higher than MLST genes. However both categories of genes showed low within CCs diversity with a dominant haplotype and its single nucleotide variants. Several recombination events were detected but none involved intra-CC recombination. This did not confirm the hypothesis of higher recombination within CCs. Nevertheless, molecular analyses of variance indicated that these few recombination events have a significant impact on the genetic diversity within CCs. In addition, although most ADH genes were under purifying selection, signs of positive selection associated with a recombinant group were detected. These data highlight the importance of recombination on the evolution of the highly clonal S. aureus and suggest that recombination when combined with demographic mechanisms as well as selection might favor the rapid creation of new clonal complexes.
Resumo:
Recently, rapid and transient cardiac pacing was shown to induce preconditioning in animal models. Whether the electrical stimulation per se or the concomitant myocardial ischemia affords such a protection remains unknown. We tested the hypothesis that chronic pacing of a cardiac preparation maintained in a normoxic condition can induce protection. Hearts of 4-day-old chick embryos were electrically paced in ovo over a 12-h period using asynchronous and intermittent ventricular stimulation (5 min on-10 min off) at 110% of the intrinsic rate. Sham (n = 6) and paced hearts (n = 6) were then excised, mounted in vitro, and subjected successively to 30 min of normoxia (20% O(2)), 30 min of anoxia (0% O(2)), and 60 min of reoxygenation (20% O(2)). Electrocardiogram and atrial and ventricular contractions were simultaneously recorded throughout the experiment. Reoxygenation-induced chrono-, dromo-, and inotropic disturbances, incidence of arrhythmias, and changes in electromechanical delay (EMD) in atria and ventricle were systematically investigated in sham and paced hearts. Under normoxia, the isolated heart beat spontaneously and regularly, and all baseline functional parameters were similar in sham and paced groups (means +/- SD): heart rate (190 +/- 36 beats/min), P-R interval (104 +/- 25 ms), mechanical atrioventricular propagation (20 +/- 4 mm/s), ventricular shortening velocity (1.7 +/- 1 mm/s), atrial EMD (17 +/- 4 ms), and ventricular EMD (16 +/- 2 ms). Under anoxia, cardiac function progressively collapsed, and sinoatrial activity finally stopped after approximately 9 min in both groups. During reoxygenation, paced hearts showed 1) a lower incidence of arrhythmias than sham hearts, 2) an increased rate of recovery of ventricular contractility compared with sham hearts, and 3) a faster return of ventricular EMD to basal value than sham hearts. However, recovery of heart rate, atrioventricular conduction, and atrial EMD was not improved by pacing. Activity of all hearts was fully restored at the end of reoxygenation. These findings suggest that chronic electrical stimulation of the ventricle at a near-physiological rate selectively alters some cellular functions within the heart and constitutes a nonischemic means to increase myocardial tolerance to a subsequent hypoxia-reoxygenation.
Resumo:
A deep understanding of the recombination dynamics of ZnO nanowires NWs is a natural step for a precise design of on-demand nanostructures based on this material system. In this work we investigate the influence of finite-size on the recombination dynamics of the neutral bound exciton around 3.365 eV for ZnO NWs with different diameters. We demonstrate that the lifetime of this excitonic transition decreases with increasing the surface-to-volume ratio due to a surface induced recombination process. Furthermore, we have observed two broad transitions around 3.341 and 3.314 eV, which were identified as surface states by studying the dependence of their life time and intensitiy with the NWs dimensions.
Resumo:
We propose a light emitting transistor based on silicon nanocrystals provided with 200 Mbits/ s built-in modulation. Suppression of electroluminescence from silicon nanocrystals embedded into the gate oxide of a field effect transistor is achieved by fast Auger quenching. In this process, a modulating drain signal causes heating of carriers in the channel and facilitates the charge injection into the nanocrystals. This excess of charge enables fast nonradiative processes that are used to obtain 100% modulation depths at modulating voltages of 1 V.
Resumo:
In a paper in this week's issue of Science, Voloshin et al. (p. 868) show that a 20-amino acid peptide from RecA, a bacterial protein that repairs and recombines DNA, can mediate DNA strand exchange--one of the functions of the RecA protein. Stasiak discusses why this result is surprising and what the rest of the RecA protein is for.
Resumo:
Sex chromosomes are expected to evolve suppressed recombination, which leads to degeneration of the Y and heteromorphism between the X and Y. Some sex chromosomes remain homomorphic, however, and the factors that prevent degeneration of the Y in these cases are not well understood. The homomorphic sex chromosomes of the European tree frogs (Hyla spp.) present an interesting paradox. Recombination in males has never been observed in crossing experiments, but molecular data are suggestive of occasional recombination between the X and Y. The hypothesis that these sex chromosomes recombine has not been tested statistically, however, nor has the X-Y recombination rate been estimated. Here, we use approximate Bayesian computation coupled with coalescent simulations of sex chromosomes to quantify X-Y recombination rate from existent data. We find that microsatellite data from H. arborea, H. intermedia and H. molleri support a recombination rate between X and Y that is significantly different from zero. We estimate that rate to be approximately 10(5) times smaller than that between X chromosomes. Our findings support the notion that very low recombination rate may be sufficient to maintain homomorphism in sex chromosomes.
Resumo:
An 80-year-old male patient experienced recently diagnosed swelling of the limbal conjunctiva. In his clinical history were found cataract surgery on the right eye 3 months before, chronic open angle glaucoma effectively treated by local eye drops, treated systemic hypertension and hypercholesterolemia. On ophthalmic examination, a conjunctival mass was present in the inferior lateral conjunctival quadrant next to the limbus, with numerous vessels visible at its top. Treatment with topical corticosteroids failed to obtain regression, but decreased the local inflammatory signs. The persistence of the mass led to its surgical excision under local anesthesia. Histopathology found a subepithelial accumulation of modified collagen bundles typical of elastotic degeneration. Capillary vessels were seen in the superficial subepithelial area, attesting to the high degree of vascularization observed clinically. The final diagnosis was a pinguecula, which was not exactly located on the horizontal meridian area as it is usual.
Resumo:
Gene transfer and expression in eukaryotes is often limited by a number of stably maintained gene copies and by epigenetic silencing effects. Silencing may be limited by the use of epigenetic regulatory sequences such as matrix attachment regions (MAR). Here, we show that successive transfections of MAR-containing vectors allow a synergistic increase of transgene expression. This finding is partly explained by an increased entry into the cell nuclei and genomic integration of the DNA, an effect that requires both the MAR element and iterative transfections. Fluorescence in situ hybridization analysis often showed single integration events, indicating that DNAs introduced in successive transfections could recombine. High expression was also linked to the cell division cycle, so that nuclear transport of the DNA occurs when homologous recombination is most active. Use of cells deficient in either non-homologous end-joining or homologous recombination suggested that efficient integration and expression may require homologous recombination-based genomic integration of MAR-containing plasmids and the lack of epigenetic silencing events associated with tandem gene copies. We conclude that MAR elements may promote homologous recombination, and that cells and vectors can be engineered to take advantage of this property to mediate highly efficient gene transfer and expression.
Resumo:
Transcription Activator-Like Effector Nucleases (TALEN) are potential tools for precise genome engineering of laboratory animals. We report the first targeted genomic integration in the rat using TALENs (Transcription Activator-Like Effector Nucleases) by homology-derived recombination (HDR). We assembled TALENs and designed a linear donor insert targeting a pA476T mutation in the rat Glucocorticoid Receptor (Nr3c1) namely GR(dim), that prevents receptor homodimerization in the mouse. TALEN mRNA and linear double-stranded donor were microinjected into rat one-cell embryos. Overall, we observed targeted genomic modifications in 17% of the offspring, indicating high TALEN cutting efficiency in rat zygotes.
Resumo:
Ectopic or tertiary lymphoid tissues (TLTs) are often induced at sites of chronic inflammation. They typically contain various hematopoietic cell types, high endothelial venules, and follicular dendritic cells; and are organized in lymph node-like structures. Although fibroblastic stromal cells may play a role in TLT induction and persistence, they have remained poorly defined. Herein, we report that TLTs arising during inflammation in mice and humans in a variety of tissues (eg, pancreas, kidney, liver, and salivary gland) contain stromal cell networks consisting of podoplanin(+) T-zone fibroblastic reticular cells (TRCs), distinct from follicular dendritic cells. Similar to lymph nodes, TRCs were present throughout T-cell-rich areas and had dendritic cells associated with them. They expressed lymphotoxin (LT) β receptor (LTβR), produced CCL21, and formed a functional conduit system. In rat insulin promoter-CXCL13-transgenic pancreas, the maintenance of TRC networks and conduits was partially dependent on LTβR and on lymphoid tissue inducer cells expressing LTβR ligands. In conclusion, TRCs and conduits are hallmarks of secondary lymphoid organs and of well-developed TLTs, in both mice and humans, and are likely to act as important scaffold and organizer cells of the T-cell-rich zone.