997 resultados para Dynamical Fidelity Function
Resumo:
The dynamics of a fragmentation model is examined from the point of view of numerical simulation and rate equations. The model includes effects of temperature. The number n (s,t) of fragments of size s at time t is obtained and is found to obey the scaling form n(s,t) approximately s(-tau)t(omegasgamma e(-rhot) f(s/t(z)) where f(x) is a crossover function satisfying f(x) congruent-to 1 for x much less than and f(x) much less than 1 for x much greater than 1. The dependence of the critical exponents tau, omega, gamma and z on space dimensionality d is studied from d = 1 to 5. The result of the dynamics on fractal and nonfractal objects as well as on square and triangular lattices is also examined.
Resumo:
This article extends results contained in Buzzi et al. (2006) [4], Llibre et al. (2007, 2008) [12,13] concerning the dynamics of non-smooth systems. In those papers a piecewise C-k discontinuous vector field Z on R-n is considered when the discontinuities are concentrated on a codimension one submanifold. In this paper our aim is to study the dynamics of a discontinuous system when its discontinuity set belongs to a general class of algebraic sets. In order to do this we first consider F :U -> R a polynomial function defined on the open subset U subset of R-n. The set F-1 (0) divides U into subdomains U-1, U-2,...,U-k, with border F-1(0). These subdomains provide a Whitney stratification on U. We consider Z(i) :U-i -> R-n smooth vector fields and we get Z = (Z(1),...., Z(k)) a discontinuous vector field with discontinuities in F-1(0). Our approach combines several techniques such as epsilon-regularization process, blowing-up method and singular perturbation theory. Recall that an approximation of a discontinuous vector field Z by a one parameter family of continuous vector fields is called an epsilon-regularization of Z (see Sotomayor and Teixeira, 1996 [18]; Llibre and Teixeira, 1997 [15]). Systems as discussed in this paper turn out to be relevant for problems in control theory (Minorsky, 1969 [16]), in systems with hysteresis (Seidman, 2006 [17]) and in mechanical systems with impacts (di Bernardo et al., 2008 [5]). (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
Within a QCD-based eikonal model with a dynamical infrared gluon mass scale we discuss how the small x behavior of the gluon distribution function at moderate Q 2 is directly related to the rise of total hadronic cross-sections. In this model the rise of total cross-sections is driven by gluon-gluon semihard scattering processes, where the behavior of the small x gluon distribution function exhibits the power law xg(x, Q 2) = h(Q 2)x( -∈). Assuming that the Q 2 scale is proportional to the dynamical gluon mass one, we show that the values of h(Q 2) obtained in this model are compatible with an earlier result based on a specific nonperturbative Pomeron model. We discuss the implications of this picture for the behavior of input valence-like gluon distributions at low resolution scales. © 2008 World Scientific Publishing Company.
Resumo:
We consider dynamical properties for an ensemble of classical particles confined to an infinite box of potential and containing a time-dependent potential well described by different nonlinear functions. For smooth functions, the phase space contains chaotic trajectories, periodic islands and invariant spanning curves preventing the unlimited particle diffusion along the energy axis. Average properties of the chaotic sea are characterised as a function of the control parameters and exponents describing their behaviour show no dependence on the perturbation functions. Given invariant spanning curves are present in the phase space, a sticky region was observed and show to modify locally the diffusion of the particles. © 2013 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We analyse the dependence of the luminosity function (LF) of galaxies in groups on group dynamical state. We use the Gaussianity of the velocity distribution of galaxy members as a measurement of the dynamical equilibrium of groups identified in the Sloan Digital Sky Survey Data Release 7 by Zandivarez & Martinez. We apply the Anderson-Darling goodness-of-fit test to distinguish between groups according to whether they have Gaussian or non-Gaussian velocity distributions, i.e. whether they are relaxed or not. For these two subsamples, we compute the (0.1)r-band LF as a function of group virial mass and group total luminosity. For massive groups, , we find statistically significant differences between the LF of the two subsamples: the LFs of groups that have Gaussian velocity distributions have a brighter characteristic absolute magnitude (similar to 0.3 mag) and a steeper faint-end slope (similar to 0.25). We detect a similar effect when comparing the LF of bright [M-0.1r(group) - 5log(h) < -23.5] Gaussian and non-Gaussian groups. Our results indicate that, for massive/luminous groups, the dynamical state of the system is directly related to the luminosity of its galaxy members.
Resumo:
The existing characterization of stability regions was developed under the assumption that limit sets on the stability boundary are exclusively composed of hyperbolic equilibrium points and closed orbits. The characterizations derived in this technical note are a generalization of existing results in the theory of stability regions. A characterization of the stability boundary of general autonomous nonlinear dynamical systems is developed under the assumption that limit sets on the stability boundary are composed of a countable number of disjoint and indecomposable components, which can be equilibrium points, closed orbits, quasi-periodic solutions and even chaotic invariant sets.
Resumo:
The harmonic oscillations of a Duffing oscillator driven by a limited power supply are investigated as a function of the alternative strength of the rotor. The semi-trivial and non-trivial solutions are derived. We examine the stability of these solutions and then explore the complex behaviors associated with the bifurcations sequences. Interestingly, a 3D diagram provides a global view of the effects of alternate strength on the appearance of chaos and hyperchaos on the system.
Resumo:
Il lavoro presentato in questa Tesi si basa sul calcolo di modelli dinamici per Galassie Sferoidali Nane studiando il problema mediante l'utilizzo di funzioni di distribuzione. Si è trattato un tipo di funzioni di distribuzione, "Action-Based distribution functions", le quali sono funzioni delle sole variabili azione. Fornax è stata descritta con un'appropriata funzione di distribuzione e il problema della costruzione di modelli dinamici è stato affrontato assumendo sia un alone di materia oscura con distribuzione di densità costante nelle regioni interne sia un alone con cuspide. Per semplicità è stata assunta simmetria sferica e non è stato calcolato esplicitamente il potenziale gravitazionale della componente stellare (le stelle sono traccianti in un potenziale gravitazionale fissato). Tramite un diretto confronto con alcune osservabili, quali il profilo di densità stellare proiettata e il profilo di dispersione di velocità lungo la linea di vista, sono stati trovati alcuni modelli rappresentativi della dinamica di Fornax. Modelli calcolati tramite funzioni di distribuzione basati su azioni permettono di determinare in maniera autoconsistente profili di anisotropia. Tutti i modelli calcolati sono caratterizzati dal possedere un profilo di anisotropia con forte anisotropia tangenziale. Sono state poi comparate le stime di materia oscura di questi modelli con i più comuni e usati stimatori di massa in letteratura. E stato inoltre stimato il rapporto tra la massa totale del sistema (componente stellare e materia oscura) e la componente stellare di Fornax, entro 1600 pc ed entro i 3 kpc. Come esplorazione preliminare, in questo lavoro abbiamo anche presentato anche alcuni esempi di modelli sferici a due componenti in cui il campo gravitazionale è determinato dall'autogravità delle stelle e da un potenziale esterno che rappresenta l'alone di materia oscura.