964 resultados para Dynamic shop scheduling
Resumo:
Lightpath scheduling is an important capability in next-generation wavelength-division multiplexing (WDM) optical networks to reserve resources in advance for a specified time period while provisioning end-to-end lightpaths. In this study, we propose an approach to support dynamic lightpath scheduling in such networks. To minimize blocking probability in a network that accommodates dynamic scheduled lightpath demands (DSLDs), resource allocation should be optimized in a dynamic manner. However, for the network users who desire deterministic services, resources must be reserved in advance and guaranteed for future use. These two objectives may be mutually incompatible. Therefore, we propose a two-phase dynamic lightpath scheduling approach to tackle this issue. The first phase is the deterministic lightpath scheduling phase. When a lightpath request arrives, the network control plane schedules a path with guaranteed resources so that the user can get a quick response with the deterministic lightpath schedule. The second phase is the lightpath re-optimization phase, in which the network control plane re-provisions some already scheduled lightpaths. Experimental results show that our proposed two-phase dynamic lightpath scheduling approach can greatly reduce WDM network blocking.
Resumo:
Lightpath scheduling is an important capability in next-generation wavelength-division multiplexing (WDM) optical networks to reserve resources in advance for a specified time period while provisioning end-to-end lightpaths. In a dynamic environment, the end user requests for dynamic scheduled lightpath demands (D-SLDs) need to be serviced without the knowledge of future requests. Even though the starting time of the request may be hours or days from the current time, the end-user however expects a quick response as to whether the request could be satisfied. We propose a two-phase approach to dynamically schedule and provision D-SLDs. In the first phase, termed the deterministic lightpath scheduling phase, upon arrival of a lightpath request, the network control plane schedules a path with guaranteed resources so that the user can get a quick response with a deterministic lightpath schedule. In the second phase, termed the lightpath re-optimization phase, we re-provision some already scheduled lightpaths to re-optimize for improving network performance. We study two reoptimization scenarios to reallocate network resources while maintaining the existing lightpath schedules. Experimental results show that our proposed two-phase dynamic lightpath scheduling approach can greatly reduce network blocking.
Resumo:
In questa tesi ci occuperemo di fornire un modello MIP di base e di alcune sue varianti, realizzate allo scopo di comprenderne il comportamento ed eventualmente migliorarne l’efficienza. Le diverse varianti sono state costruite agendo in particolar modo sulla definizione di alcuni vincoli, oppure sui bound delle variabili, oppure ancora nell’obbligare il risolutore a focalizzarsi su determinate decisioni o specifiche variabili. Sono stati testati alcuni dei problemi tipici presenti in letteratura e i diversi risultati sono stati opportunamente valutati e confrontati. Tra i riferimenti per tale confronto sono stati considerati anche i risultati ottenibili tramite un modello Constraint Programming, che notoriamente produce risultati apprezzabili in ambito di schedulazione. Un ulteriore scopo della tesi è, infatti, comparare i due approcci Mathematical Programming e Constraint Programming, identificandone quindi i pregi e gli svantaggi e provandone la trasferibilità al modello raffrontato.
Resumo:
This paper presents a simulated genetic algorithm (GA) model of scheduling the flow shop problem with re-entrant jobs. The objective of this research is to minimize the weighted tardiness and makespan. The proposed model considers that the jobs with non-identical due dates are processed on the machines in the same order. Furthermore, the re-entrant jobs are stochastic as only some jobs are required to reenter to the flow shop. The tardiness weight is adjusted once the jobs reenter to the shop. The performance of the proposed GA model is verified by a number of numerical experiments where the data come from the case company. The results show the proposed method has a higher order satisfaction rate than the current industrial practices.
Resumo:
Abstract not available
Resumo:
Abstract not available
Resumo:
Abstract not available
Resumo:
Abstract not available
Resumo:
Abstract not available
Resumo:
Abstract not available
Resumo:
This project developed three mathematical models for scheduling ambulances and ambulance crews and proceeded to solve each model for test scenarios based on real data. Results from these models can serve as decision aids for dispatching or relocating ambulances; and for strategic decisions on the ambulance crews needed each shift. This thesis used Flexible Flow Shop Scheduling techniques to formulate strategic, dynamic and real time models. Metaheuristic solutions techniques were applied for a case study with realistic data. These models are suitable for ambulance planners and dispatchers.
Resumo:
In this paper, we design a new dynamic packet scheduling scheme suitable for differentiated service (DiffServ) network. Designed dynamic benefit weighted scheduling (DBWS) uses a dynamic weighted computation scheme loosely based on weighted round robin (WRR) policy. It predicts the weight required by expedited forwarding (EF) service for the current time slot (t) based on two criteria; (i) previous weight allocated to it at time (t-1), and (ii) the average increase in the queue length of EF buffer. This prediction provides smooth bandwidth allocation to all the services by avoiding overbooking of resources for EF service and still providing guaranteed services for it. The performance is analyzed for various scenarios at high, medium and low traffic conditions. The results show that packet loss is minimized, end to end delay is minimized and jitter is reduced and therefore meet quality of service (QoS) requirement of a network.
Resumo:
The re-entrant flow shop scheduling problem (RFSP) is regarded as a NP-hard problem and attracted the attention of both researchers and industry. Current approach attempts to minimize the makespan of RFSP without considering the interdependency between the resource constraints and the re-entrant probability. This paper proposed Multi-level genetic algorithm (GA) by including the co-related re-entrant possibility and production mode in multi-level chromosome encoding. Repair operator is incorporated in the Multi-level genetic algorithm so as to revise the infeasible solution by resolving the resource conflict. With the objective of minimizing the makespan, Multi-level genetic algorithm (GA) is proposed and ANOVA is used to fine tune the parameter setting of GA. The experiment shows that the proposed approach is more effective to find the near-optimal schedule than the simulated annealing algorithm for both small-size problem and large-size problem. © 2013 Published by Elsevier Ltd.