865 resultados para Dual Diffusion
Resumo:
We have performed MRI examinations to determine the water diffusion tensor in the brain of six patients who were admitted to the hospital within 12 h after the onset of cerebral ischemic symptoms. The examinations have been carried out immediately after admission, and thereafter at varying intervals up to 90 days post admission. Maps of the trace of the diffusion tensor, the fractional anisotropy and the lattice index, as well as maps of cerebral blood perfusion parameters, were generated to quantitatively assess the character of the water diffusion tensor in the infarcted area. In patients with significant perfusion deficits and substantial lesion volume changes, four of six cases, our measurements show a monotonic and significant decrease in the diffusion anisotropy within the ischemic lesion as a function of time. We propose that retrospective analysis of this quantity, in combination with brain tissue segmentation and cerebral perfusion maps, may be used in future studies to assess the severity of the ischemic event. (C) 1999 Elsevier Science Inc.
Resumo:
Polymer hydrogels based upon methacrylates are used extensively in the pharmaceutical industry, particularly as controlled release drug delivery systems. These materials are generally prepared by chemically initiated polymerization, but this can lead to the presence of unwanted initiator fragments in the polymer matrix. In the present work, initiation of polymerization by gamma-irradiation of hydroxyethyl methacrylate, with and without added crosslinkers, has been investigated, and the diffusion coefficients for water in the resulting polymers have been measured through mass uptake by the polymers. The diffusion of water in poly(hydroxyethyl methacrylate) at 310 K was found to be Fickian, with a diffusion coefficient of 1.96 +/- 0.1 x 10(11) m(2) s(-1) and an equilibrium water content of 58%, NMR imaging analyses confirmed the adherance to a Fickian model of the diffusion of water into polymer cylinders. The incorporation of small amounts (0.2-0.5 wt%) of added ethyleneglycol-dimethacrylate-based crosslinkers was found to have only a small effect on the diffusion coefficient and the equilibrium water content for the copolymers. (C) 1999 Society of Chemical Industry.
Resumo:
OBJECTIVE: To use magnetic resonance imaging (MRI) to validate estimates of muscle and adipose tissue (AT) in lower limb sections obtained by dual-energy X-ray absorptiometry (DXA) modelling. DESIGN: MRI measurements were used as reference for validating limb muscle and AT estimates obtained by DXA models that assume fat-free soft tissue (FFST) comprised mainly muscle: model A accounted for bone hydration only; model B also applied constants for FFST in bone and skin and fat in muscle and AT; model C was as model B but allowing for variable fat in muscle and AT. SUBJECTS: Healthy men (n = 8) and women (n = 8), ages 41 - 62 y; mean (s.d.) body mass indices (BMIs) of 28.6 (5.4) kg/m(2) and 25.1 (5.4) kg/m2, respectively. MEASUREMENTS: MRI scans of the legs and whole body DXA scans were analysed for muscle and AT content of thigh (20 cm) and lower leg (10 cm) sections; 24 h creatinine excretion was measured. RESULTS: Model A overestimated thigh muscle volume (MRI mean, 2.3 l) substantially (bias 0.36 l), whereas model B underestimated it by only 2% (bias 0.045 l). Lower leg muscle (MRI mean, 0.6 l) was better predicted using model A (bias 0.04 l, 7% overestimate) than model B (bias 0.1 l, 17% underestimate). The 95% limits of agreement were high for these models (thigh,+/- 20%; lower leg,+/- 47%). Model C predictions were more discrepant than those of model B. There was generally less agreement between MRI and all DXA models for AT. Measurement variability was generally less for DXA measurements of FFST (coefficient of variation 0.7 - 1.8%) and fat (0.8 - 3.3%) than model B estimates of muscle (0.5-2.6%) and AT (3.3 - 6.8%), respectively. Despite strong relationships between them, muscle mass was overestimated by creatinine excretion with highly variable predictability. CONCLUSION: This study has shown the value of DXA models for assessment of muscle and AT in leg sections, but suggests the need to re-evaluate some of the assumptions upon which they are based.
Resumo:
Numerical methods ave used to solve double diffusion driven reactive flow transport problems in deformable fluid-saturated porous media. in particular, thp temperature dependent reaction rate in the non-equilibrium chemical reactions is considered. A general numerical solution method, which is a combination of the finite difference method in FLAG and the finite element method in FIDAP, to solve the fully coupled problem involving material deformation, pore-fluid flow, heat transfer and species transport/chemical reactions in deformable fluid-saturated porous media has been developed The coupled problem is divided into two subproblems which are solved interactively until the convergence requirement is met. Owing to the approximate nature of the numerical method, if is essential to justify the numerical solutions through some kind of theoretical analysis. This has been highlighted in this paper The related numerical results, which are justified by the theoretical analysis, have demonstrated that the proposed solution method is useful for and applicable to a wide range of fully coupled problems in the field of science and engineering.
Resumo:
A novel MRI method-diffusion tensor imaging-was used to compare the integrity of several white matter fibre tracts in patients with probable Alzheimer's disease. Relative to normal controls, patients with probable Alzheimer's disease showed a highly significant reduction in the integrity of the association white matter fibre tracts, such as the splenium of the corpus callosum, superior longitudinal fasciculus, and cingulum. By contrast, pyramidal tract integrity seemed unchanged. This novel finding is consistent with the clinical presentation of probable Alzheimer's disease, in which global cognitive decline is a more prominent feature than motor disturbance.
Resumo:
Current theoretical thinking about dual processes in recognition relies heavily on the measurement operations embodied within the process dissociation procedure. We critically evaluate the ability of this procedure to support this theoretical enterprise. We show that there are alternative processes that would produce a rough invariance in familiarity (a key prediction of the dual-processing approach) and that the process dissociation procedure does not have the power to differentiate between these alternative possibilities. We also show that attempts to relate parameters estimated by the process dissociation procedure to subjective reports (remember-know judgments) cannot differentiate between alternative dual-processing models and that there are problems with some of the historical evidence and with obtaining converging evidence. Our conclusion is that more specific theories incorporating ideas about representation and process are required.
Resumo:
A dual catalyst bed system (Au/Fe2O3 + Pt-Pd/Al2O3) for eliminating hydrogen from the CO2 feed gas in urea synthesis is found to be far superior to commercially available and patented catalysts in catalytic activity. At relatively low temperatures, hydrogen is eliminated and coexistent CO is also oxidized completely to useful CO2. This can avoid effectively the accidental explosion of hydrogen-oxygen-ammonia mixed gases, thus ensuring the safety of urea synthesis.
Resumo:
Diffusion- and perfusion-weighted magnetic resonance imaging provides important pathophysiological information in acute bra-in ischemia. We performed a prospective study in 19 sub-6-hour stroke patients using serial diffusion- and perfusion-weighted imaging before intravenous thrombolysis, with repeat studies, both subacutely and at outcome. For comparison of ischemic lesion evolution and clinical outcome, we used a historical control group of 21 sub-6-hour ischemic stroke patients studied serially with diffusion- and perfusion-weighted imaging. The two groups were well matched for the baseline National Institutes of Health Stroke Scale and magnetic resonance parameters. Perfusion-weighted imaging-diffusion-weighted imaging mismatch was present in 16 of 19 patients treated with tissue plasminogen activator, and 16 of 21 controls. Perfusion-weighted imaging-diffusion-weighted imaging mismatch patients treated with tissue plaminogen activator had higher recanalization rates and enhanced reperfusion at day 3 (81% vs 47% in controls), and a greater proportion of severely hypoperfused acute mismatch tissue not progressing to infarction (82% vs -25% in controls). Despite similar baseline diffusion-weighted imaging lesions, infarct expansion was less in the recombinant tissue plaminogen activator group (14cm(3) vs 56cm(3) in controls). The positive effect of thrombolysis on lesion growth in mismatch patients translated into a greater improvement in baseline to outcome National Institutes of Health Stroke Scale in the group treated with recombinant tissue plaminogen activator, and a significantly larger proportion of patients treated with recombinant tissue plaminogen activator having a clinically meaningful improvement in National Institutes of Health Stroke Scale of;2:7 points. The natural evolution of acute perfusion-weighted imaging-diffusion-weighted imaging mismatch tissue may be altered by thrombolysis, with improved stroke outcome. This has implications for the use of diffusion- and perfusion-weighted imaging in selecting and monitoring patients for thrombolytic therapy.
Resumo:
No abstract
Resumo:
The acquisition and extinction of affective valence to neutral geometrical shape conditional stimuli was investigated in three experiments. Experiment 1 employed a differential conditioning procedure with aversive shock USs. Differential electrodermal responding was evident during acquisition and lost during extinction. As indexed by verbal ratings, the CS1 acquired negative valence during acquisition,which was reduced after extinction. Affective priming, a reaction time based demand free measure of stimulus valence, failed to provide evidence for affective learning. Experiment 2 employed pictures of happy and angry faces as USs.Valence ratings after acquisitionweremore positive for theCS paired with happy faces (CS-H) and less positive for the CS paired with angry faces (CS-A) than during baseline. Extinction training reduced the extent of acquired valence significantly for both CSs, however, ratings of the CS-A remained different from baseline. Affective priming confirmed these results yielding differences between CS-A and CS-H after acquisition for pleasant and unpleasant targets, but for pleasant targets only after extinction. Experiment 3 replicated the design of Experiment 2, but presented the US pictures backwardly masked. Neither rating nor affective priming measures yielded any evidence for affective learning. The present results confirm across two different experimental procedures that, contrary to predictions from dual process accounts of human learning, affective learning is subject to extinction.