998 resultados para Drug derivative
Resumo:
We have used various computational methodologies including molecular dynamics, density functional theory, virtual screening, ADMET predictions and molecular interaction field studies to design and analyze four novel potential inhibitors of farnesyltransferase (FTase). Evaluation of two proposals regarding their drug potential as well as lead compounds have indicated them as novel promising FTase inhibitors, with theoretically interesting pharmacotherapeutic profiles, when Compared to the very active and most cited FTase inhibitors that have activity data reported, which are launched drugs or compounds in clinical tests. One of our two proposals appears to be a more promising drug candidate and FTase inhibitor, but both derivative molecules indicate potentially very good pharmacotherapeutic profiles in comparison with Tipifarnib and Lonafarnib, two reference pharmaceuticals. Two other proposals have been selected with virtual screening approaches and investigated by LIS, which suggest novel and alternatives scaffolds to design future potential FTase inhibitors. Such compounds can be explored as promising molecules to initiate a research protocol in order to discover novel anticancer drug candidates targeting farnesyltransferase, in the fight against cancer. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Plasmodium falciparum resistant strain development has encouraged the search for new antimalarial drugs. Febrifugine is a natural substance with high activity against P. falciparum presenting strong emetic property and liver toxicity, which prevent it from being used as a clinical drug. The search for analogues that could have a better clinical performance is a current topic. We aim to investigate the theoretical electronic structure by means of febrifugine derivative family semi-empirical molecular orbital calculations, seeking the electronic indexes that could help the design of new efficient derivatives. The theoretical results show there is a clustering in well-defined ranges of several electronic indexes of the most selective molecules. The model proposed for achieving high selectivity was tested with success.
Resumo:
RESUMO: Sessenta e três derivados de hidantoína foram utilizados para avaliar possíveis efeitos de modulação na actividade das bombas de efluxo (BE) na Salmonella NCTC 13349 utilizando um método fluorimétrico semi-automático. Nenhum dos compostos apresentaram actividade anti-bacteriana até concentrações de 240 mg/L. Entre todos os compostos, SZ-7 demonstrou possuir propriedades de modulação de effluxo na presença de glucose. Para testar esta actividade, estirpes de Salmonella resistentes à ciprofloxacina, induzidas a elevados níveis de resistência com sobre-expressão de BE, foram expostas ao SZ-7. Este derivado afectou a susceptibilidade das estirpes à ciprofloxacina. Uma vez que os 63 compostos estudados apresentaram pouco efeito inibitório /cumulativo, apesar de serem conhecidos pelos seus efeitos moduladores de BE-dependentes de iões em eucariotas, foi questionado o papel dos iões na regulação de BE bacterianas, que poderão influenciar a eficácia de novos compostos. Para este estudo, utilizamos a Escherichia coli AG100 como modelo, devido ao extenso conhecimento no que respeita a estrutura e actividade das BE. Devido à importância de iões de cálcio (Ca2+) nos canais de transporte membranar e na actividade de ATPases, a sua actividade na modulação do efluxo foi investigada. De resultados anteriormente obtidos concluiu-se que a pH 5 o efluxo é independente de energia metabólica; contudo, a pH 8 é absolutamente dependente, sendo que o Ca2+ é indispensável para manter a actividade das ATPases bacterianas. A acumulação/effluxo de EtBr pela E. coli AG100 foi determinada na presença/ausência de Ca2+, clorpromazina (inibidor de ligação de Ca2+ a proteínas), e ácido etilenodiamino tetra-acético (quelante de Ca2+). Acumulação/effluxo aumentou a pH 8, contudo o Ca2+ reverte estes efeitos evidenciando a sua importância no funcionamento das BE bacterianas. Em resumo este trabalho colocou em evidência que muitos aspectos bioquímicos e bioenergéticos devem ser tomados em consideração no estudo da resistência bacteriana mediada por BE.------- ABSTRACT: Sixty-three hydantoin derivatives were evaluated for their modulating effects on efflux pump (EP) activity of Salmonella NCTC 13349 utilizing a semi-automatic fluorometric method. None of the compounds presented antibacterial activities at concentrations as high as 240 mg/L. Among all compounds, SZ-7 showed possible efflux modulating activity in the presence of glucose, indicative of a potential EP inhibitor. To verify its potential effects, ciprofloxacin-resistant Salmonella strains, induced to high level resistance with over-expressing EPs, were exposed to SZ-7. This derivative affected the susceptibility of the ciprofloxacin-resistant strains. Since the 63 compounds studied had very low inhibitory/accumulative effects, even though their known for being efficient in modulating ion-driven eukaryotic EPs, we questioned whether ions had a leading role in regulating bacterial EPs, influencing the effectiveness of new compounds. For this study we used Escherichia coli AG100 as a model, due to the extensive knowledge on its EPs structure and activity. Owing the importance of calcium ions (Ca2+) for membrane transport channels and activity of ATPases, the role of Ca2+ was investigated. From previous results we concluded that at pH 5 efflux is independent of metabolic energy; however, at pH 8 it is entirely dependent of metabolic energy and the Ca2+ ions are essential to maintain the activity of bacterial ATPases. Accumulation and efflux of ethidium bromide (EtBr) by E. coli AG100 was determined in the presence and absence of Ca2+, chlorpromazine (inhibitor of Ca2+-binding to proteins), and ethylenediaminetetraacetic acid (Ca2+ chelator). Accumulation of EtBr increased at pH 8; however Ca2+ reversed these effects providing information as to the importance of this ion in the regulation of bacterial EP systems. Overall this work puts in evidence that many biochemical and bioenergetic aspects related to the strains physiology need to be taken into consideration in bacterial drug resistance mediated by EPs.
Resumo:
The nitroimidazole-tiadiazole derivative CL 64,855 (2-amino-5-(1-methyl-5-nitro-2-imidazolyl)-1,3,4-thiadiazole, a potent anti-trypanosomal drug, was assayed in a short-term bacterial mutagenicity test with Salmonella typhimurium strains TA 98, TA 100 and TA 102. Results indicate that CL 64,855 is a potent frameshift mutagen detected by strains TA 98 and TA 102. CL 64,855 was able to revert the indicators strains at concentrations as low as 0.1 µg/plate. Metabolic activation experiments with rat liver microsomal fractions did not increase the mutagenic action of Cl 64,855.
Resumo:
The molecular basis of glycopeptide-intermediate S. aureus (GISA) isolates is not well defined though frequently involves phenotypes such as thickened cell walls and decreased autolysis. We have exploited an isogenic pair of teicoplanin-susceptible (strain MRGR3) and teicoplanin-resistant (strain 14-4) methicillin-resistant S. aureus strains for detailed transcriptomic profiling and analysis of altered autolytic properties. Strain 14-4 displayed markedly deficient Triton X-100-triggered autolysis compared to its teicoplanin-susceptible parent, although microarray analysis paradoxically did not reveal significant reductions in expression levels of major autolytic genes atl, lytM, and lytN, except for sle1, which showed a slight decrease. The most important paradox was a more-than-twofold increase in expression of the cidABC operon in 14-4 compared to MRGR3, which was correlated with decreased expression of autolysis negative regulators lytSR and lrgAB. In contrast, the autolysis-deficient phenotype of 14-4 was correlated with both increased expression of negative autolysis regulators (arlRS, mgrA, and sarA) and decreased expression of positive regulators (agr RNAII and RNAIII). Quantitative bacteriolytic assays and zymographic analysis of concentrated culture supernatants showed a striking reduction in Atl-derived, extracellular bacteriolytic hydrolase activities in 14-4 compared to MRGR3. This observed difference was independent of the source of cell wall substrate (MRGR3 or 14-4) used for analysis. Collectively, our results suggest that altered autolytic properties in 14-4 are apparently not driven by significant changes in the transcription of key autolytic effectors. Instead, our analysis points to alternate regulatory mechanisms that impact autolysis effectors which may include changes in posttranscriptional processing or export.
Resumo:
Aggregation-prone polyglutamine (polyQ) expansion proteins cause several neurodegenerative disorders, including Huntington disease. The pharmacological activation of cellular stress responses could be a new strategy to combat protein conformational diseases. Hydroxylamine derivatives act as co-inducers of heat-shock proteins (HSPs) and can enhance HSP expression in diseased cells, without significant adverse effects. Here, we used Caenorhabditis elegans expressing polyQ expansions with 35 glutamines fused to the yellow fluorescent protein (Q35-YFP) in body wall muscle cells as a model system to investigate the effects of treatment with a novel hydroxylamine derivative, NG-094, on the progression of polyQ diseases. NG-094 significantly ameliorated polyQ-mediated animal paralysis, reduced the number of Q35-YFP aggregates and delayed polyQ-dependent acceleration of aging. Micromolar concentrations of NG-094 in animal tissues with only marginal effects on the nematode fitness sufficed to confer protection against polyQ proteotoxicity, even when the drug was administered after disease onset. NG-094 did not reduce insulin/insulin-like growth factor 1-like signaling, but conferred cytoprotection by a mechanism involving the heat-shock transcription factor HSF-1 that potentiated the expression of stress-inducible HSPs. NG-094 is thus a promising candidate for tests on mammalian models of polyQ and other protein conformational diseases.
Resumo:
The activity of several diarylheptanoid derivatives (curcuminoids) was previously evaluated against Leishmania amazonensis promastigotes and among them the most active compound was the [1-(4-methoxy-phenyl)-7-(3,4-methoxy-4-hydroxy-phenyl)-1,6-heptadien-3, 5-dione]. This derivative was chosen to be assayed in vivo in a treatment trial. For these experiments, the curcuminoid compound was used in a concentration equivalent to the IC50/24 h, obtained from the previous study. Balb/c mice were inoculated subcutaneously in the footpad with L. amazonensis infective promastigotes and 4 weeks after the inoculation, the animals were treated with different schemes, varying from 1 to 3 doses. In all the experiments, Pentamidine Isethionate was used as reference drug under the same experimental conditions. The results showed that one dose was not enough to heal the lesion, however, with 2 and 3 doses the efficiency of the assayed compound was clear. On the other hand, treatment with Pentamidine Isethionate using the three different schemes was not satisfactory when compared to the curcuminoid derivative.
Resumo:
19-Norandrosterone (19-NA) as its glucuronide derivative is the target metabolite in anti-doping testing to reveal an abuse of nandrolone or nandrolone prohormone. To provide further evidence of a doping with these steroids, the sulfoconjugate form of 19-norandrosterone in human urine might be monitored as well. In the present study, the profiling of sulfate and glucuronide derivatives of 19-norandrosterone together with 19-noretiocholanolone (19-NE) were assessed in the spot urines of 8 male subjects, collected after administration of 19-nor-4-androstenedione (100mg). An LC/MS/MS assay was employed for the direct quantification of sulfoconjugates, whereas a standard GC/MS method was applied for the assessment of glucuroconjugates in urine specimens. Although the 19-NA glucuronide derivative was always the most prominent at the excretion peak, inter-individual variability of the excretion patterns was observed for both conjugate forms of 19-NA and 19-NE. The ratio between the glucuro- and sulfoconjugate derivatives of 19-NA and 19-NE could not discriminate the endogenous versus the exogenous origin of the parent compound. However, after ingestion of 100mg 19-nor-4-androstenedione, it was observed in the urine specimens that the sulfate conjugates of 19-NA was detectable over a longer period of time with respect to the other metabolites. These findings indicate that more interest shall be given to this type of conjugation to deter a potential doping with norsteroids.
Resumo:
C75 is a synthetic compound described as having antitumoral properties. It produces hypophagia and weight loss in rodents, limiting its use in cancer therapy but identify- ing it as a potential anti-obesity drug. C75 is a fatty acid synthase (FAS) inhibitor and, through its coenzyme A (CoA) derivative, it acts as a carnitine palmitoyltransferase (CPT) 1 inhibitor. Racemic mixtures of C75 have been used in all the previous studies; however, the potential dif- ferent biological activities of C75 enantiomers have not been examined yet. To address this question we synthesized the two C75 enantiomers separately. Our results showed that ( )- C75 inhibits FAS activity in vitro and has a cytotoxic effect on tumor cell lines, without affecting food consumption. (+)-C75 inhibits CPT1 and its administration produces anorexia, suggesting that central inhibition of CPT1 is essential for the anorectic effect of C75. The differential activity of C75 enantiomers may lead to the development of potential new specific drugs for cancer and obesity.
Resumo:
C75 is a synthetic compound described as having antitumoral properties. It produces hypophagia and weight loss in rodents, limiting its use in cancer therapy but identify- ing it as a potential anti-obesity drug. C75 is a fatty acid synthase (FAS) inhibitor and, through its coenzyme A (CoA) derivative, it acts as a carnitine palmitoyltransferase (CPT) 1 inhibitor. Racemic mixtures of C75 have been used in all the previous studies; however, the potential dif- ferent biological activities of C75 enantiomers have not been examined yet. To address this question we synthesized the two C75 enantiomers separately. Our results showed that ( )- C75 inhibits FAS activity in vitro and has a cytotoxic effect on tumor cell lines, without affecting food consumption. (+)-C75 inhibits CPT1 and its administration produces anorexia, suggesting that central inhibition of CPT1 is essential for the anorectic effect of C75. The differential activity of C75 enantiomers may lead to the development of potential new specific drugs for cancer and obesity.
Resumo:
A straightforward synthesis of the Met antagonist JLK1360 involving an alkylationcyclocondensation process using aminothiazole 1 and nitrophenacyl bromide 2, reduction of the nitro group, and coupling of the resulting tetracyclic aniline 5 with an appropriate N-acyl alanine derivative, is reported.
Resumo:
A straightforward synthesis of the Met antagonist JLK1360 involving an alkylationcyclocondensation process using aminothiazole 1 and nitrophenacyl bromide 2, reduction of the nitro group, and coupling of the resulting tetracyclic aniline 5 with an appropriate N-acyl alanine derivative, is reported.
Resumo:
In this work, we introduce dipeptides containing tryptophan N-capped with the nonsteroidal anti-inflammatory drug naproxen and C-terminal dehydroamino acids, dehydrophenylalanine (ΔPhe), dehydroaminobutyric acid (ΔAbu), and dehydroalanine (ΔAla) as efficacious protease resistant hydrogelators. Optimized conditions for gel formation are reported. Transmission electron microscopy experiments revealed that the hydrogels consist of networks of micro/nanosized fibers formed by peptide self-assembly. Fluorescence and circular dichroism spectroscopy indicate that the self-assembly process is driven by stacking interactions of the aromatic groups. The naphthalene groups of the naproxen moieties are highly organized in the fibers through chiral stacking. Rheological experiments demonstrated that the most hydrophobic peptide (containing C-terminal ΔPhe) formed more elastic gels at lower critical gelation concentrations. This gel revealed irreversible breakup, while the C-terminal ΔAbu and ΔAla gels, although less elastic, exhibited structural recovery and partial healing of the elastic properties. A potential antitumor thieno[3,2-b]pyridine derivative was incorporated (noncovalently) into the gel formed by the hydrogelator containing C-terminal ΔPhe residue. Fluorescence and Förster resonance energy transfer measurements indicate that the drug is located in a hydrophobic environment, near/associated with the peptide fibers, establishing this type of hydrogel as a good drug-nanocarrier candidate.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)