946 resultados para Drosophila Spermatogenesis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The roles of myosin during muscle contraction are well studied, but how different domains of this protein are involved in myofibril assembly in vivo is far less understood. The indirect flight muscles (IFMs) of Drosophila melanogaster provide a good model for understanding muscle development and function in vivo. We show that two missense mutations in the rod region of the myosin heavy-chain gene, Mhc, give rise to IFM defects and abnormal myofibrils. These defects likely result from thick filament abnormalities that manifest during early sarcomere development or later by hypercontraction. The thick filament defects are accompanied by marked reduction in accumulation of flightin, a myosin binding protein, and its phosphorylated forms, which are required to stabilise thick filaments. We investigated with purified rod fragments whether the mutations affect the coiled-coil structure, rod aggregate size or rod stability. No significant changes in these parameters were detected, except for rod thermodynamic stability in one mutation. Molecular dynamics simulations suggest that these mutations may produce localised rod instabilities. We conclude that the aberrant myofibrils are a result of thick filament defects, but that these in vivo effects cannot be detected in vitro using the biophysical techniques employed. The in vivo investigation of these mutant phenotypes in IFM development and function provides a useful platform for studying myosin rod and thick filament formation generically, with application to the aetiology of human myosin rod myopathies. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we report the results of a study aimed at examining stability of adult emergence and activity/rest rhythms under seminatural conditions (henceforth SN), in four large outbred fruit fly Drosophila melanogaster populations, selected for emergence in a narrow window of time under laboratory (henceforth LAB) light/dark (LD) cycles. When assessed under LAB, selected flies display enhanced stability in terms of higher amplitude, synchrony and accuracy in emergence and activity rhythms compared to controls. The present study was conducted to assess whether such differences in stability between selected and control populations, persist under SN where several gradually changing time-cues are present in their strongest form. The study revealed that under SN, emergence waveform of selected flies was modified, with even more enhanced peak and narrower gate-width compared to those observed in the LAB and compared to control populations in SN. Furthermore, flies from selected populations continued to exhibit enhanced synchrony and accuracy in their emergence and activity rhythms under SN compared to controls. Further analysis of zeitgeber effects revealed that enhanced stability in the rhythmicity of selected flies under SN was primarily due to increased sensitivity to light because emergence and activity rhythms of selected flies were as stable as controls under temperature cycles. These results thus suggest that stability of circadian rhythms in fruit flies D. melanogaster, which evolved as a consequence of selection for emergence in a narrow window of time under weak zeitgeber condition of LAB, persists robustly in the face of day-to-day variations in cycling environmental factors of nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Muscle development is a multistep process which includes myoblast diversification, proliferation, migration, fusion, differentiation and growth. A hierarchical exhibition of myogenic factors is important for dexterous execution of progressive events in muscle formation. EWG (erect wing) is a transcription factor known to have a role in indirect flight muscle development (IFM) in Drosophila. We marked out the precise spatio-temporal expression profile of EWG in the myoblasts, and in the developing muscles. Mutant adult flies null for EWG in myoblasts show variable number of IFM, suggesting that EWG is required for patterning of the IFM. The remnant muscle found in the EWG null flies show proper assembly of the structural proteins, which implies that some myoblasts manage to fuse, develop and differentiate normally indicating that EWG is not required for differentiation program per se. However, when EWG expression is extended beyond its expression window in a wild type background, muscle thinning is observed implying EWG function in protein synthesis inhibition. Mis-expression studies in wing disc myoblasts hinted at its role in myoblast proliferation. We thus conclude that EWG is important for regulating fusion events which in turn decides the IFM pattern. Also IFM in EWG null mutants show clumps containing broken fibres and an altered mitochondrial morphology. The vertebrate homolog of EWG is nuclear respiratory factor1 (NRF1) which is known to have a function in mitochondrial biogenesis and protection against oxidative stress. Gene expression for inner mitochondrial membrane protein, Opa1-like was found to be absent in these mutants. Also, these flies were more sensitive to oxidative stress, indicating a compromised mitochondrial functioning. Our results therefore demonstrate that EWG functions in maintaining muscles’ structural integrity by ensuing proper mitochondrial activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myopathies are muscular diseases in which muscle fibers degenerate due to many factors such as nutrient deficiency, infection and mutations in myofibrillar etc. The objective of this study is to identify the bio-markers to distinguish various muscle mutants in Drosophila (fruit fly) using Raman Spectroscopy. Principal Components based Linear Discriminant Analysis (PC-LDA) classification model yielding >95% accuracy was developed to classify such different mutants representing various myopathies according to their physiopathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanisms involved in establishing the organization and numbers of fibres in a muscle are not completely understood. During Drosophila indirect flight muscle (IFM) formation, muscle growth is achieved by both incorporating hundreds of nuclei, and hypertrophy. As a result, IFMs provide a good model with which to understand the mechanisms that govern overall muscle organization and growth. We present a detailed analysis of the organization of dorsal longitudinal muscles (DLMs), a subset of the IFMs. We show that each DLM is similar to a vertebrate fascicle and consists of multiple muscle fibres. However, increased fascicle size does not necessarily change the number of constituent fibres, but does increase the number of myofibrils packed within the fibres. We also find that altering the number of myoblasts available for fusion changes DLM fascicle size and fibres are loosely packed with myofibrils. Additionally, we show that knock down of genes required for mitochondrial fusion causes a severe reduction in the size of DLM fascicles and fibres. Our results establish the organization levels of DLMs and highlight the importance of the appropriate number of nuclei and mitochondrial fusion in determining the overall organization, growth and size of DLMs. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myopathies are muscular diseases in which muscle fibers degenerate due to many factors such as nutrient deficiency, infection and mutations in myofibrillar etc. The objective of this study is to identify the bio-markers to distinguish various muscle mutants in Drosophila (fruit fly) using Raman Spectroscopy. Principal Components based Linear Discriminant Analysis (PC-LDA) classification model yielding >95% accuracy was developed to classify such different mutants representing various myopathies according to their physiopathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial biogenesis and morphological changes are associated with tissue-specific functional demand, but the factors and pathways that regulate these processes have not been completely identified. A lack of mitochondrial fusion has been implicated in various developmental and pathological defects. The spatiotemporal regulation of mitochondrial fusion in a tissue such as muscle is not well understood. Here, we show in Drosophila indirect flight muscles (IFMs) that the nuclear-encoded mitochondrial inner membrane fusion gene, Opa1-like, is regulated in a spatiotemporal fashion by the transcription factor/co-activator Erect wing (Ewg). In IFMs null for Ewg, mitochondria undergo mitophagy and/or autophagy accompanied by reduced mitochondrial functioning and muscle degeneration. By following the dynamics of mitochondrial growth and shape in IFMs, we found that mitochondria grow extensively and fuse during late pupal development to form the large tubular mitochondria. Our evidence shows that Ewg expression during early IFM development is sufficient to upregulate Opa1-like, which itself is a requisite for both late pupal mitochondrial fusion and muscle maintenance. Concomitantly, by knocking down Opa1-like during early muscle development, we show that it is important for mitochondrial fusion, muscle differentiation and muscle organization. However, knocking down Opa1-like, after the expression window of Ewg did not cause mitochondrial or muscle defects. This study identifies a mechanism by which mitochondrial fusion is regulated spatiotemporally by Ewg through Opa1-like during IFM differentiation and growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fruit fly Drosophila melanogaster females display rhythmic egg-laying under 12: 12 h light/dark (LD) cycles which persists with near 24 h periodicity under constant darkness (DD). We have shown previously that persistence of this rhythm does not require the neurons expressing pigment dispersing factor (PDF), thought to be the canonical circadian pacemakers, and proposed that it could be controlled by peripheral clocks or regulated/triggered by the act of mating. We assayed egg-laying behaviour of wild-type Canton S (CS) females under LD, DD and constant light (LL) conditions in three different physiological states; as virgins, as females allowed to mate with males for 1 day and as females allowed to mate for the entire duration of the assay. Here, we report the presence of a circadian rhythm in egg-laying in virgin D. melanogaster females. We also found that egg-laying behaviour of 70 and 90% females from all the three male presence/absence protocols follows circadian rhythmicity under DD and LL, with periods ranging between 18 and 30 h. The egg-laying rhythm of all virgin females synchronized to LD cycles with a peak occurring soon after lights-off. The rhythm in virgins was remarkably robust with maximum number of eggs deposited immediately after lights-off in contrast to mated females which show higher egg-laying during the day. These results suggest that the egg-laying rhythm of D. melanogaster is endogenously driven and is neither regulated nor triggered by the act of mating; instead, the presence of males results in reduction in entrainment to LD cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dopamine monoxygenase N-terminal (DOMON) domain is found in extracellular proteins across several eukaryotic and prokaryotic taxa. It has been proposed that this domain binds to heme or sugar moieties. Here, we have analyzed the role of four highly conserved amino acids in the DOMON domain of the Drosophila melanogaster Knickkopf protein that is inserted into the apical plasma membrane and assists extracellular chitin organization. In principal, we generated Knickkopf versions with exchanged residues tryptophan(299,) methionine(333), arginine(401), or histidine(437), and scored for the ability of the respective engineered protein to normalize the knickkopf mutant phenotype. Our results confirm the absolute necessity of tryptophan(299,) methionine(333), and histidine(437) for Knickkopf function and stability, the latter two being predicted to be critical for heme binding. In contrast, arginine(401) is required for full efficiency of Knickkopf activity. Taken together, our genetic data support the prediction of these residues to mediate the function of Knickkopf during cuticle differentiation in insects. Hence, the DOMON domain is apparently an essential factor contributing to the construction of polysaccharide-based extracellular matrices.