979 resultados para Drawn steel wire
Resumo:
O objetivo deste trabalho foi analisar a expressão dos torques dentários em pacientes tratados com aparelhos ortodônticos fixos com bráquetes autoligados, utilizando tomografias computadorizadas. Para este estudo, foi selecionada uma amostra clínica de 10 pacientes, seguindo como critérios de inclusão, indivíduos que apresentavam dentição permanente e todos os dentes presentes, com apinhamento superior ou igual a 4 mm, tratados sem extração. Todos os pacientes foram tratados na clínica da pós-graduação em Ortodontia da Universidade Metodista de São Paulo, utilizando-se bráquetes autoligados Damon 2 ORMCO na prescrição padrão. Foram realizadas medições das inclinações dos dentes anteriores, de canino a canino, superiores e inferiores, realizadas por meio de imagens tomográficas obtidas em um tomógrafo computadorizado volumétrico NewTom, em seu modelo DVT-9000 (NIM Verona - Itália), obtidas em dois tempos: antes do início do tratamento ortodôntico (denominado de T1) e depois do tratamento ortodôntico, após a inserção do último fio de nivelamento, de calibre 0,019 x 0,025 de aço inoxidável(denominado de T2). Para auxílio destas mensurações, foi utilizado o software QR-DVT 9000 e após análise dos resultados foram aplicados testes estatíscos (testes "t" pareado e Dalberg) e observou-se que as inclinações dos dentes do segmento anterior aumentaram, principalmente, nos caninos e incisivos laterais superiores, incisivos centrais e laterais inferiores. Os dentes apresentaram valores de inclinação diferentes da prescrição, tanto no início quanto no final do tratamento, denotando a incapacidade do fio 0,019 x 0,025 de aço inoxidável em reproduzir os torques indicados na prescrição padrão utilizada neste presente estudo.(AU)
Resumo:
The research work described in this thesis is concerned with the development of glassfibre reinforced plastics for structural uses in Civil Engineering construction. The first stage was primarily concerned with the design of GRP lamintes with structura1 properties and method of manufacture suitable for use with relatively large structural components. A cold setting, pressure moulding technique was developed which proved to be efficient in reducing the void content in the composite and minimising the exothermic effect due to curing. The effect of fibre content and fibre arrangement on strength and stiffness of the cornposite was studied and the maximum amount of' fibre content that could be reached by the adopted type of moulding technique was determined. The second stage of the project was concerned with the introduction of steel-wire "sheets" into the GRP cornposites, to take advantage of the high modulus of steel wire to improve the GRP stiffness and to reduce deformation. The experimental observations agreed reasonably well with theoretical predictions in both first and second stages of the work. The third stage was concerned with studying the stability of GRP flat rectangular plates subjected to uniaxial compression or pure shear, to simulate compression flanges or shear webs respectively. The investigation was concentrated on the effect of fibre arrangement in the plate on buckling load. The effect of the introduction of steel-wire sheets on the plate stability in compression was also investigated. The boundary conditions were chosen to be close to those usually assumed in built-up box-sections for both compression flanges and webs. The orthotropic plate and the mid-plane symmetric were used successfully in predicting the buckling load theoretically. In determining the buckling load experimentally, two methods were used. The Southwell plot method and electrical strain gauge method. The latter proved to be more reliable in predicting the buckling load than the former, especially for plates under uniaxial compression. Sample design charts for GRP plates that yield and buckle simultaneously under compression are also presented in the thesis. The final stage of the work dealt with the design and test of GRP beams. The investigation began by finding the optimum cross-section for a GRP beam. The cross-section which was developed was a thin walled corrugated section which showed higher stiffness than other cross-sections for the same cross-sectional area (i.e. box, I, and rectangular sections). A cold setting, hand layings technique was used in manufacturing these beams wbich were of nine types depending on the type of glass reinforcement employed and the arrangement of layers in the beam. The simple bending theory was used in the beam design and proved to be satisfactory in predicting the stresses and deflections. A factor of safety of 4 was chosen for design purposes and considered to be suitable for long term use under static load. Because of its relatively low modulus, GRP beams allowable deflection was limited to 1/120th of the span which was found to be adequate for design purposes. A general discussion of the behaviour of GRP composites and their place relative to the more conventional structural material was also presented in the thesis.
Resumo:
Cementite dissolution in cold-drawn pearlitic steel (0.8 wt.% carbon) wires has been studied by quantitative X-ray diffraction (XRD) and Mossbauer spectroscopy up to drawing strain 1.4. Quantification of cementite-phase fraction by Rietveld analysis has confirmed more than 50% dissolution of cementite phase at drawing strain 1.4. It is found that the lattice parameter of the ferrite phase determined by Rietveld refinement procedure remains nearly unchanged even after cementite dissolution. This confirms that the carbon atoms released after cementite dissolution do not dissolve in the ferrite lattice as Fe-C interstitial solid solution. Detailed analysis of broadening of XRD line profiles for the ferrite phase shows high density of dislocations (approximate to 10(15)/m(2)) in the ferrite matrix at drawing strain 1.4. The results suggest a dominant role of 111 screw dislocations in the cementite dissolution process. Post-deformation heat treatment leads to partial annihilation of dislocations and restoration of cementite phase. Based on these experimental observations, further supplemented by TEM studies, we have suggested an alternative thermodynamic mechanism of the dissolution process.
Resumo:
Damage tolerance of high strength cold-drawn ferritic–austenitic stainless steel wires is assessed by means of tensile fracture tests of cracked wires. The fatigue crack is transversally propagated from the wire surface. The damage tolerance curve of the wires results from the empirical failure load when given as a function of crack depth. As a consequence of cold drawing, the wire microstructure is orientated along its longitudinal axis and anisotropic fracture behaviour is found at macrostructural level at the tensile failure of the cracked specimens. An in situ optical technique known as video image correlation VIC-2D is used to get an insight into this failure mechanism by tensile testing transversally fatigue cracked plane specimens extracted from the cold-drawn wires. Finally, the experimentally obtained damage tolerance curve of the cold-drawn ferritic–austenitic stainless steel wires is compared with that of an elementary plastic collapse model and existing data of two types of high strength eutectoid steel currently used as prestressing steel for concrete.