989 resultados para Distribution de Poisson généralisé
Resumo:
The study of proportions is a common topic in many fields of study. The standard beta distribution or the inflated beta distribution may be a reasonable choice to fit a proportion in most situations. However, they do not fit well variables that do not assume values in the open interval (0, c), 0 < c < 1. For these variables, the authors introduce the truncated inflated beta distribution (TBEINF). This proposed distribution is a mixture of the beta distribution bounded in the open interval (c, 1) and the trinomial distribution. The authors present the moments of the distribution, its scoring vector, and Fisher information matrix, and discuss estimation of its parameters. The properties of the suggested estimators are studied using Monte Carlo simulation. In addition, the authors present an application of the TBEINF distribution for unemployment insurance data.
Resumo:
In this article, we propose a new Bayesian flexible cure rate survival model, which generalises the stochastic model of Klebanov et al. [Klebanov LB, Rachev ST and Yakovlev AY. A stochastic-model of radiation carcinogenesis - latent time distributions and their properties. Math Biosci 1993; 113: 51-75], and has much in common with the destructive model formulated by Rodrigues et al. [Rodrigues J, de Castro M, Balakrishnan N and Cancho VG. Destructive weighted Poisson cure rate models. Technical Report, Universidade Federal de Sao Carlos, Sao Carlos-SP. Brazil, 2009 (accepted in Lifetime Data Analysis)]. In our approach, the accumulated number of lesions or altered cells follows a compound weighted Poisson distribution. This model is more flexible than the promotion time cure model in terms of dispersion. Moreover, it possesses an interesting and realistic interpretation of the biological mechanism of the occurrence of the event of interest as it includes a destructive process of tumour cells after an initial treatment or the capacity of an individual exposed to irradiation to repair altered cells that results in cancer induction. In other words, what is recorded is only the damaged portion of the original number of altered cells not eliminated by the treatment or repaired by the repair system of an individual. Markov Chain Monte Carlo (MCMC) methods are then used to develop Bayesian inference for the proposed model. Also, some discussions on the model selection and an illustration with a cutaneous melanoma data set analysed by Rodrigues et al. [Rodrigues J, de Castro M, Balakrishnan N and Cancho VG. Destructive weighted Poisson cure rate models. Technical Report, Universidade Federal de Sao Carlos, Sao Carlos-SP. Brazil, 2009 (accepted in Lifetime Data Analysis)] are presented.
Resumo:
In this article we propose a bootstrap test for the probability of ruin in the compound Poisson risk process. We adopt the P-value approach, which leads to a more complete assessment of the underlying risk than the probability of ruin alone. We provide second-order accurate P-values for this testing problem and consider both parametric and nonparametric estimators of the individual claim amount distribution. Simulation studies show that the suggested bootstrap P-values are very accurate and outperform their analogues based on the asymptotic normal approximation.
Resumo:
Serial correlation of extreme midlatitude cyclones observed at the storm track exits is explained by deviations from a Poisson process. To model these deviations, we apply fractional Poisson processes (FPPs) to extreme midlatitude cyclones, which are defined by the 850 hPa relative vorticity of the ERA interim reanalysis during boreal winter (DJF) and summer (JJA) seasons. Extremes are defined by a 99% quantile threshold in the grid-point time series. In general, FPPs are based on long-term memory and lead to non-exponential return time distributions. The return times are described by a Weibull distribution to approximate the Mittag–Leffler function in the FPPs. The Weibull shape parameter yields a dispersion parameter that agrees with results found for midlatitude cyclones. The memory of the FPP, which is determined by detrended fluctuation analysis, provides an independent estimate for the shape parameter. Thus, the analysis exhibits a concise framework of the deviation from Poisson statistics (by a dispersion parameter), non-exponential return times and memory (correlation) on the basis of a single parameter. The results have potential implications for the predictability of extreme cyclones.
Resumo:
This study retrospectively evaluated the spatial and temporal disease patterns associated with influenza-like illness (ILI), positive rapid influenza antigen detection tests (RIDT), and confirmed H1N1 S-OIV cases reported to the Cameron County Department of Health and Human Services between April 26 and May 13, 2009 using the space-time permutation scan statistic software SaTScan in conjunction with geographical information system (GIS) software ArcGIS 9.3. The rate and age-adjusted relative risk of each influenza measure was calculated and a cluster analysis was conducted to determine the geographic regions with statistically higher incidence of disease. A Poisson distribution model was developed to identify the effect that socioeconomic status, population density, and certain population attributes of a census block-group had on that area's frequency of S-OIV confirmed cases over the entire outbreak. Predominant among the spatiotemporal analyses of ILI, RIDT and S-OIV cases in Cameron County is the consistent pattern of a high concentration of cases along the southern border with Mexico. These findings in conjunction with the slight northward space-time shifts of ILI and RIDT cluster centers highlight the southern border as the primary site for public health interventions. Finally, the community-based multiple regression model revealed that three factors—percentage of the population under age 15, average household size, and the number of high school graduates over age 25—were significantly associated with laboratory-confirmed S-OIV in the Lower Rio Grande Valley. Together, these findings underscore the need for community-based surveillance, improve our understanding of the distribution of the burden of influenza within the community, and have implications for vaccination and community outreach initiatives.^
Resumo:
This paper deals with sequences of random variables belonging to a fixed chaos of order q generated by a Poisson random measure on a Polish space. The problem is investigated whether convergence of the third and fourth moment of such a suitably normalized sequence to the third and fourth moment of a centred Gamma law implies convergence in distribution of the involved random variables. A positive answer is obtained for q = 2 and q = 4. The proof of this four moments theorem is based on a number of new estimates for contraction norms. Applications concern homogeneous sums and U-statistics on the Poisson space.
Resumo:
Count data with excess zeros relative to a Poisson distribution are common in many biomedical applications. A popular approach to the analysis of such data is to use a zero-inflated Poisson (ZIP) regression model. Often, because of the hierarchical Study design or the data collection procedure, zero-inflation and lack of independence may occur simultaneously, which tender the standard ZIP model inadequate. To account for the preponderance of zero counts and the inherent correlation of observations, a class of multi-level ZIP regression model with random effects is presented. Model fitting is facilitated using an expectation-maximization algorithm, whereas variance components are estimated via residual maximum likelihood estimating equations. A score test for zero-inflation is also presented. The multi-level ZIP model is then generalized to cope with a more complex correlation structure. Application to the analysis of correlated count data from a longitudinal infant feeding study illustrates the usefulness of the approach.
Resumo:
The factors determining the size of individual β-amyloid (A,8) deposits and their size frequency distribution in tissue from Alzheimer's disease (AD) patients have not been established. In 23/25 cortical tissues from 10 AD patients, the frequency of Aβ deposits declined exponentially with increasing size. In a random sample of 400 Aβ deposits, 88% were closely associated with one or more neuronal cell bodies. The frequency distribution of (Aβ) deposits which were associated with 0,1,2,...,n neuronal cell bodies deviated significantly from a Poisson distribution, suggesting a degree of clustering of the neuronal cell bodies. In addition, the frequency of Aβ deposits declined exponentially as the number of associated neuronal cell bodies increased. Aβ deposit area was positively correlated with the frequency of associated neuronal cell bodies, the degree of correlation being greater for pyramidal cells than smaller neurons. These data suggested: (1) the number of closely adjacent neuronal cell bodies which simultaneously secrete Aβ was an important factor determining the size of an Aβ deposit and (2) the exponential decline in larger Aβ deposits reflects the low probability that larger numbers of adjacent neurons will secrete Aβ simultaneously to form a deposit. © 1995.
Resumo:
An organism living in water, and present at low density, may be distributed at random and therefore, samples taken from the water are likely to be distributed according to the Poisson distribution. The distribution of many organisms, however, is not random, individuals being either aggregated into clusters or more uniformly distributed. By fitting a Poisson distribution to data, it is only possible to test the hypothesis that an observed set of frequencies does not deviate significantly from an expected random pattern. Significant deviations from random, either as a result of increasing uniformity or aggregation, may be recognized by either rejection of the random hypothesis or by examining the variance/mean (V/M) ratio of the data. Hence, a V/M ratio not significantly different from unity indicates a random distribution, greater than unity a clustered distribution, and less then unity a regular or uniform distribution . If individual cells are clustered, however, the negative binomial distribution should provide a better description of the data. In addition, a parameter of this distribution, viz., the binomial exponent (k), may be used as a measure of the ‘intensity’ of aggregation present. Hence, this Statnote describes how to fit the negative binomial distribution to counts of a microorganism in samples taken from a freshwater environment.
Resumo:
2010 Mathematics Subject Classification: 60E05, 62P05.
Resumo:
La campagne PELGAS participe à la gestion du stock d’anchois du Golfe de Gascogne, en réalisant une évaluation directe à la mer de la biomasse d’anchois. Pour déterminer la biomasse totale, des appareils acoustiques envoyant des ultra-sons dans l’eau pour détecter les bancs de poisson sont utilisés. Ensuite des pêches sont effectuées sur les zones détectées pour déterminer la composition des bancs (espèces, poids, longueurs…). En parallèle, les oeufs d’anchois sont comptés. A partir des données récoltées de 2000 à 2015, j’ai pu réaliser des cartes de distribution spatiale des anchois et de leurs oeufs, ainsi que des analyses statistiques afin de comprendre les différences de distribution entre les deux. Il s’avère que les oeufs sont plus au large que les anchois, ce qui est dû à une question de poids moyen et de fécondité. Les anchois les plus gros seraient plus féconds et se localisent plus au large, d’où la répartition des oeufs plus éloignées des côtes que la biomasse totale d’anchois. La fécondité et le poids des anchois font parties des paramètres qui ont une influence sur la distribution des oeufs.