915 resultados para Distributed artificial intelligence - multiagent systems
Resumo:
Moving towards autonomous operation and management of increasingly complex open distributed real-time systems poses very significant challenges. This is particularly true when reaction to events must be done in a timely and predictable manner while guaranteeing Quality of Service (QoS) constraints imposed by users, the environment, or applications. In these scenarios, the system should be able to maintain a global feasible QoS level while allowing individual nodes to autonomously adapt under different constraints of resource availability and input quality. This paper shows how decentralised coordination of a group of autonomous interdependent nodes can emerge with little communication, based on the robust self-organising principles of feedback. Positive feedback is used to reinforce the selection of the new desired global service solution, while negative feedback discourages nodes to act in a greedy fashion as this adversely impacts on the provided service levels at neighbouring nodes. The proposed protocol is general enough to be used in a wide range of scenarios characterised by a high degree of openness and dynamism where coordination tasks need to be time dependent. As the reported results demonstrate, it requires less messages to be exchanged and it is faster to achieve a globally acceptable near-optimal solution than other available approaches.
Resumo:
Embedded real-time applications increasingly present high computation requirements, which need to be completed within specific deadlines, but that present highly variable patterns, depending on the set of data available in a determined instant. The current trend to provide parallel processing in the embedded domain allows providing higher processing power; however, it does not address the variability in the processing pattern. Dimensioning each device for its worst-case scenario implies lower average utilization, and increased available, but unusable, processing in the overall system. A solution for this problem is to extend the parallel execution of the applications, allowing networked nodes to distribute the workload, on peak situations, to neighbour nodes. In this context, this report proposes a framework to develop parallel and distributed real-time embedded applications, transparently using OpenMP and Message Passing Interface (MPI), within a programming model based on OpenMP. The technical report also devises an integrated timing model, which enables the structured reasoning on the timing behaviour of these hybrid architectures.
Resumo:
Replication is a proven concept for increasing the availability of distributed systems. However, actively replicating every software component in distributed embedded systems may not be a feasible approach. Not only the available resources are often limited, but also the imposed overhead could significantly degrade the system's performance. The paper proposes heuristics to dynamically determine which components to replicate based on their significance to the system as a whole, its consequent number of passive replicas, and where to place those replicas in the network. The results show that the proposed heuristics achieve a reasonably higher system's availability than static offline decisions when lower replication ratios are imposed due to resource or cost limitations. The paper introduces a novel approach to coordinate the activation of passive replicas in interdependent distributed environments. The proposed distributed coordination model reduces the complexity of the needed interactions among nodes and is faster to converge to a globally acceptable solution than a traditional centralised approach.
Resumo:
In distributed soft real-time systems, maximizing the aggregate quality-of-service (QoS) is a typical system-wide goal, and addressing the problem through distributed optimization is challenging. Subtasks are subject to unpredictable failures in many practical environments, and this makes the problem much harder. In this paper, we present a robust optimization framework for maximizing the aggregate QoS in the presence of random failures. We introduce the notion of K-failure to bound the effect of random failures on schedulability. Using this notion we define the concept of K-robustness that quantifies the degree of robustness on QoS guarantee in a probabilistic sense. The parameter K helps to tradeoff achievable QoS versus robustness. The proposed robust framework produces optimal solutions through distributed computations on the basis of Lagrangian duality, and we present some implementation techniques. Our simulation results show that the proposed framework can probabilistically guarantee sub-optimal QoS which remains feasible even in the presence of random failures.
Resumo:
Replication is a proven concept for increasing the availability of distributed systems. However, actively replicating every software component in distributed embedded systems may not be a feasible approach. Not only the available resources are often limited, but also the imposed overhead could significantly degrade the system’s performance. This paper proposes heuristics to dynamically determine which components to replicate based on their significance to the system as a whole, its consequent number of passive replicas, and where to place those replicas in the network. The activation of passive replicas is coordinated through a fast convergence protocol that reduces the complexity of the needed interactions among nodes until a new collective global service solution is determined.
Resumo:
Due to the growing complexity and adaptability requirements of real-time embedded systems, which often exhibit unrestricted inter-dependencies among supported services and user-imposed quality constraints, it is increasingly difficult to optimise the level of service of a dynamic task set within an useful and bounded time. This is even more difficult when intending to benefit from the full potential of an open distributed cooperating environment, where service characteristics are not known beforehand. This paper proposes an iterative refinement approach for a service’s QoS configuration taking into account services’ inter-dependencies and quality constraints, and trading off the achieved solution’s quality for the cost of computation. Extensive simulations demonstrate that the proposed anytime algorithm is able to quickly find a good initial solution and effectively optimises the rate at which the quality of the current solution improves as the algorithm is given more time to run. The added benefits of the proposed approach clearly surpass its reducedoverhead.
Resumo:
In this paper, we propose the Distributed using Optimal Priority Assignment (DOPA) heuristic that finds a feasible partitioning and priority assignment for distributed applications based on the linear transactional model. DOPA partitions the tasks and messages in the distributed system, and makes use of the Optimal Priority Assignment (OPA) algorithm known as Audsley’s algorithm, to find the priorities for that partition. The experimental results show how the use of the OPA algorithm increases in average the number of schedulable tasks and messages in a distributed system when compared to the use of Deadline Monotonic (DM) usually favoured in other works. Afterwards, we extend these results to the assignment of Parallel/Distributed applications and present a second heuristic named Parallel-DOPA (P-DOPA). In that case, we show how the partitioning process can be simplified by using the Distributed Stretch Transformation (DST), a parallel transaction transformation algorithm introduced in [1].
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Desarrollo de un robot seguidor de líneas, en el que se implementan diversas soluciones de las áreas de sistemas embebidos e inteligencia artificial.
Resumo:
Self-organization is a growing interdisciplinary field of research about a phenomenon that can be observed in the Universe, in Nature and in social contexts. Research on self-organization tries to describe and explain forms, complex patterns and behaviours that arise from a collection of entities without an external organizer. As researchers in artificial systems, our aim is not to mimic self-organizing phenomena arising in Nature, but to understand and to control underlying mechanisms allowing desired emergence of forms, complex patterns and behaviours. Rather than attempting to eliminate such self-organization in artificial systems, we think that this might be deliberately harnessed in order to reach desirable global properties. In this paper we analyze three forms of self-organization: stigmergy, reinforcement mechanisms and cooperation. The amplification phenomena founded in stigmergic process or in reinforcement process are different forms of positive feedbacks that play a major role in building group activity or social organization. Cooperation is a functional form for self-organization because of its ability to guide local behaviours in order to obtain a relevant collective one. For each forms of self-organisation, we present a case study to show how we transposed it to some artificial systems and then analyse the strengths and weaknesses of such an approach
Resumo:
La scoliose idiopathique de l’adolescent (SIA) est une déformation tri-dimensionelle du rachis. Son traitement comprend l’observation, l’utilisation de corsets pour limiter sa progression ou la chirurgie pour corriger la déformation squelettique et cesser sa progression. Le traitement chirurgical reste controversé au niveau des indications, mais aussi de la chirurgie à entreprendre. Malgré la présence de classifications pour guider le traitement de la SIA, une variabilité dans la stratégie opératoire intra et inter-observateur a été décrite dans la littérature. Cette variabilité s’accentue d’autant plus avec l’évolution des techniques chirurgicales et de l’instrumentation disponible. L’avancement de la technologie et son intégration dans le milieu médical a mené à l’utilisation d’algorithmes d’intelligence artificielle informatiques pour aider la classification et l’évaluation tridimensionnelle de la scoliose. Certains algorithmes ont démontré être efficace pour diminuer la variabilité dans la classification de la scoliose et pour guider le traitement. L’objectif général de cette thèse est de développer une application utilisant des outils d’intelligence artificielle pour intégrer les données d’un nouveau patient et les évidences disponibles dans la littérature pour guider le traitement chirurgical de la SIA. Pour cela une revue de la littérature sur les applications existantes dans l’évaluation de la SIA fut entreprise pour rassembler les éléments qui permettraient la mise en place d’une application efficace et acceptée dans le milieu clinique. Cette revue de la littérature nous a permis de réaliser que l’existence de “black box” dans les applications développées est une limitation pour l’intégration clinique ou la justification basée sur les évidence est essentielle. Dans une première étude nous avons développé un arbre décisionnel de classification de la scoliose idiopathique basé sur la classification de Lenke qui est la plus communément utilisée de nos jours mais a été critiquée pour sa complexité et la variabilité inter et intra-observateur. Cet arbre décisionnel a démontré qu’il permet d’augmenter la précision de classification proportionnellement au temps passé à classifier et ce indépendamment du niveau de connaissance sur la SIA. Dans une deuxième étude, un algorithme de stratégies chirurgicales basé sur des règles extraites de la littérature a été développé pour guider les chirurgiens dans la sélection de l’approche et les niveaux de fusion pour la SIA. Lorsque cet algorithme est appliqué à une large base de donnée de 1556 cas de SIA, il est capable de proposer une stratégie opératoire similaire à celle d’un chirurgien expert dans prêt de 70% des cas. Cette étude a confirmé la possibilité d’extraire des stratégies opératoires valides à l’aide d’un arbre décisionnel utilisant des règles extraites de la littérature. Dans une troisième étude, la classification de 1776 patients avec la SIA à l’aide d’une carte de Kohonen, un type de réseaux de neurone a permis de démontrer qu’il existe des scoliose typiques (scoliose à courbes uniques ou double thoracique) pour lesquelles la variabilité dans le traitement chirurgical varie peu des recommandations par la classification de Lenke tandis que les scolioses a courbes multiples ou tangentielles à deux groupes de courbes typiques étaient celles avec le plus de variation dans la stratégie opératoire. Finalement, une plateforme logicielle a été développée intégrant chacune des études ci-dessus. Cette interface logicielle permet l’entrée de données radiologiques pour un patient scoliotique, classifie la SIA à l’aide de l’arbre décisionnel de classification et suggère une approche chirurgicale basée sur l’arbre décisionnel de stratégies opératoires. Une analyse de la correction post-opératoire obtenue démontre une tendance, bien que non-statistiquement significative, à une meilleure balance chez les patients opérés suivant la stratégie recommandée par la plateforme logicielle que ceux aillant un traitement différent. Les études exposées dans cette thèse soulignent que l’utilisation d’algorithmes d’intelligence artificielle dans la classification et l’élaboration de stratégies opératoires de la SIA peuvent être intégrées dans une plateforme logicielle et pourraient assister les chirurgiens dans leur planification préopératoire.
Resumo:
This report outlines the problem of intelligent failure recovery in a problem-solver for electrical design. We want our problem solver to learn as much as it can from its mistakes. Thus we cast the engineering design process on terms of Problem Solving by Debugging Almost-Right Plans, a paradigm for automatic problem solving based on the belief that creation and removal of "bugs" is an unavoidable part of the process of solving a complex problem. The process of localization and removal of bugs called for by the PSBDARP theory requires an approach to engineering analysis in which every result has a justification which describes the exact set of assumptions it depends upon. We have developed a program based on Analysis by Propagation of Constraints which can explain the basis of its deductions. In addition to being useful to a PSBDARP designer, these justifications are used in Dependency-Directed Backtracking to limit the combinatorial search in the analysis routines. Although the research we will describe is explicitly about electrical circuits, we believe that similar principles and methods are employed by other kinds of engineers, including computer programmers.
Resumo:
Pearon's resource from the Brookshear Chapter