867 resultados para Distributed Ledger
Resumo:
In distributed video coding, motion estimation is typically performed at the decoder to generate the side information, increasing the decoder complexity while providing low complexity encoding in comparison with predictive video coding. Motion estimation can be performed once to create the side information or several times to refine the side information quality along the decoding process. In this paper, motion estimation is performed at the decoder side to generate multiple side information hypotheses which are adaptively and dynamically combined, whenever additional decoded information is available. The proposed iterative side information creation algorithm is inspired in video denoising filters and requires some statistics of the virtual channel between each side information hypothesis and the original data. With the proposed denoising algorithm for side information creation, a RD performance gain up to 1.2 dB is obtained for the same bitrate.
Resumo:
Low-density parity-check (LDPC) codes are nowadays one of the hottest topics in coding theory, notably due to their advantages in terms of bit error rate performance and low complexity. In order to exploit the potential of the Wyner-Ziv coding paradigm, practical distributed video coding (DVC) schemes should use powerful error correcting codes with near-capacity performance. In this paper, new ways to design LDPC codes for the DVC paradigm are proposed and studied. The new LDPC solutions rely on merging parity-check nodes, which corresponds to reduce the number of rows in the parity-check matrix. This allows to change gracefully the compression ratio of the source (DCT coefficient bitplane) according to the correlation between the original and the side information. The proposed LDPC codes reach a good performance for a wide range of source correlations and achieve a better RD performance when compared to the popular turbo codes.
Resumo:
Processes are a central entity in enterprise collaboration. Collaborative processes need to be executed and coordinated in a distributed Computational platform where computers are connected through heterogeneous networks and systems. Life cycle management of such collaborative processes requires a framework able to handle their diversity based on different computational and communication requirements. This paper proposes a rational for such framework, points out key requirements and proposes it strategy for a supporting technological infrastructure. Beyond the portability of collaborative process definitions among different technological bindings, a framework to handle different life cycle phases of those definitions is presented and discussed. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Several Web-based on-line judges or on-line programming trainers have been developed in order to allow students to train their programming skills. However, their pedagogical functionalities in the learning of programming have not been clearly defined. EduJudge is a project which aims to integrate the “UVA On-line Judge”, an existing on-line programming trainer with an important number of problems and users, into an effective educational environment consisting of the e-learning platform Moodle and the competitive learning tool QUESTOURnament. The result is the EduJudge system which allows teachers to apply different pedagogical approaches using a proven e-learning platform, makes problems easy to search through an effective search engine, and provides an automated evaluation of the solutions submitted to these problems. The final objective is to provide new learning strategies to motivate students and present programming as an easy and attractive challenge. EduJudge has been tried and tested in three algorithms and programming courses in three different Engineering degrees. The students’ motivation and satisfaction levels were analysed alongside the effects of the EduJudge system on students’ academic outcomes. Results indicate that both students and teachers found that among other multiple benefits the EduJudge system facilitates the learning process. Furthermore, the experi- ment also showed an improvement in students’ academic outcomes. It must be noted that the students’ level of satisfaction did not depend on their computer skills or their gender.
Resumo:
This work addresses the problem of traction control in mobile wheeled robots in the particular case of the RoboCup Middle Size League (MSL). The slip control problem is formulated using simple friction models for ISePorto Team robots with a differential wheel configuration. Traction was also characterized experimentally in the MSL scenario for relevant game events. This work proposes a hierarchical traction control architecture which relies in local slip detection and control at each wheel, with relevant information being relayed to a higher level responsible for global robot motion control. A dedicated one axis control embedded hardware subsystem allowing complex local control, high frequency current sensing and odometric information procession was developed. This local axis control board is integrated in a distributed system using CAN bus communications. The slipping observer was implemented in the axis control hardware nodes integrated in the ISePorto robots and was used to control and detect loss of for traction. %and to detect the ball in the kicking device. An external vision system was used to perform a qualitative analysis of the slip detection and observer performance results are presented.
Resumo:
A number of characteristics are boosting the eagerness of extending Ethernet to also cover factory-floor distributed real-time applications. Full-duplex links, non-blocking and priority-based switching, bandwidth availability, just to mention a few, are characteristics upon which that eagerness is building up. But, will Ethernet technologies really manage to replace traditional Fieldbus networks? Ethernet technology, by itself, does not include features above the lower layers of the OSI communication model. In the past few years, it is particularly significant the considerable amount of work that has been devoted to the timing analysis of Ethernet-based technologies. It happens, however, that the majority of those works are restricted to the analysis of sub-sets of the overall computing and communication system, thus without addressing timeliness at a holistic level. To this end, we are addressing a few inter-linked research topics with the purpose of setting a framework for the development of tools suitable to extract temporal properties of Commercial-Off-The-Shelf (COTS) Ethernet-based factory-floor distributed systems. This framework is being applied to a specific COTS technology, Ethernet/IP. In this paper, we reason about the modelling and simulation of Ethernet/IP-based systems, and on the use of statistical analysis techniques to provide usable results. Discrete event simulation models of a distributed system can be a powerful tool for the timeliness evaluation of the overall system, but particular care must be taken with the results provided by traditional statistical analysis techniques.
Resumo:
Virtual Reality (VR) has grown to become state-of-theart technology in many business- and consumer oriented E-Commerce applications. One of the major design challenges of VR environments is the placement of the rendering process. The rendering process converts the abstract description of a scene as contained in an object database to an image. This process is usually done at the client side like in VRML [1] a technology that requires the client’s computational power for smooth rendering. The vision of VR is also strongly connected to the issue of Quality of Service (QoS) as the perceived realism is subject to an interactive frame rate ranging from 10 to 30 frames-per-second (fps), real-time feedback mechanisms and realistic image quality. These requirements overwhelm traditional home computers or even high sophisticated graphical workstations over their limits. Our work therefore introduces an approach for a distributed rendering architecture that gracefully balances the workload between the client and a clusterbased server. We believe that a distributed rendering approach as described in this paper has three major benefits: It reduces the clients workload, it decreases the network traffic and it allows to re-use already rendered scenes.
Resumo:
Virtual and augmented reality (VR/AR) are increasingly being used in various business scenarios and are important driving forces in technology development. However the usage of these technologies in the home environment is restricted due to several factors including lack of low-cost (from the client point of view) highperformance solutions. In this paper we present a general client/server rendering architecture based on Real-Time concepts, including support for a wide range of client platforms and applications. The idea of focusing on the real-time behaviour of all components involved in distributed IP-based VR scenarios is new and has not been addressed before, except for simple sub-solutions. This is considered as “the most significant problem with the IP environment” [1]. Thus, the most important contribution of this research will be the holistic approach, in which networking, end-systems and rendering aspects are integrated into a cost-effective infrastructure for building distributed real-time VR applications on IP-based networks.
Resumo:
This paper proposes a new architecture targeting real-time and reliable Distributed Computer-Controlled Systems (DCCS). This architecture provides a structured approach for the integration of soft and/or hard real-time applications with Commercial O -The-Shelf (COTS) components. The Timely Computing Base model is used as the reference model to deal with the heterogeneity of system components with respect to guaranteeing the timeliness of applications. The reliability and availability requirements of hard real-time applications are guaranteed by a software-based fault-tolerance approach.
Resumo:
In this paper, we analyse the ability of Profibus fieldbus to cope with the real-time requirements of a Distributed Computer Control System (DCCS), where messages associated to discrete events must be made available within a maximum bound time. Our methodology is based on the knowledge of real-time traffic characteristics, setting the network parameters in order to cope with timing requirements. Since non-real-time traffic characteristics are usually unknown at the design stage, we consider an operational profile where, constraining non-real-time traffic at the application level, we assure that realtime requirements are met.
Resumo:
Fieldbus communication networks aim to interconnect sensors, actuators and controllers within process control applications. Therefore, they constitute the foundation upon which real-time distributed computer-controlled systems can be implemented. P-NET is a fieldbus communication standard, which uses a virtual token-passing medium-access-control mechanism. In this paper pre-run-time schedulability conditions for supporting real-time traffic with P-NET networks are established. Essentially, formulae to evaluate the upper bound of the end-to-end communication delay in P-NET messages are provided. Using this upper bound, a feasibility test is then provided to check the timing requirements for accessing remote process variables. This paper also shows how P-NET network segmentation can significantly reduce the end-to-end communication delays for messages with stringent timing requirements.
Resumo:
In the past few years, a significant amount of work has been devoted to the timing analysis of Ethernet-based technologies. However, none of these address the problem of timeliness evaluation at a holistic level. This paper describes a research framework embracing this objective. It is advocated that, simulation models can be a powerful tool, not only for timeliness evaluation, but also to enable the introduction of less pessimistic assumptions in an analytical response time approach, which, most often, are afflicted with simplifications leading to pessimistic assumptions and, therefore, delusive results. To this end, we address a few inter-linked research topics with the purpose of setting a framework for developing tools suitable to extract temporal properties of commercial-off-the-shelf (COTS) factory-floor communication systems.
Resumo:
It is generally challenging to determine end-to-end delays of applications for maximizing the aggregate system utility subject to timing constraints. Many practical approaches suggest the use of intermediate deadline of tasks in order to control and upper-bound their end-to-end delays. This paper proposes a unified framework for different time-sensitive, global optimization problems, and solves them in a distributed manner using Lagrangian duality. The framework uses global viewpoints to assign intermediate deadlines, taking resource contention among tasks into consideration. For soft real-time tasks, the proposed framework effectively addresses the deadline assignment problem while maximizing the aggregate quality of service. For hard real-time tasks, we show that existing heuristic solutions to the deadline assignment problem can be incorporated into the proposed framework, enriching their mathematical interpretation.
Resumo:
Field communication systems (fieldbuses) are widely used as the communication support for distributed computer-controlled systems (DCCS) within all sort of process control and manufacturing applications. There are several advantages in the use of fieldbuses as a replacement for the traditional point-to-point links between sensors/actuators and computer-based control systems, within which the most relevant is the decentralisation and distribution of the processing power over the field. A widely used fieldbus is the WorldFIP, which is normalised as European standard EN 50170. Using WorldFIP to support DCCS, an important issue is “how to guarantee the timing requirements of the real-time traffic?” WorldFIP has very interesting mechanisms to schedule data transfers, since it explicitly distinguishes periodic and aperiodic traffic. In this paper, we describe how WorldFIP handles these two types of traffic, and more importantly, we provide a comprehensive analysis on how to guarantee the timing requirements of the real-time traffic.
Resumo:
In Distributed Computer-Controlled Systems (DCCS), both real-time and reliability requirements are of major concern. Architectures for DCCS must be designed considering the integration of processing nodes and the underlying communication infrastructure. Such integration must be provided by appropriate software support services. In this paper, an architecture for DCCS is presented, its structure is outlined, and the services provided by the support software are presented. These are considered in order to guarantee the real-time and reliability requirements placed by current and future systems.