908 resultados para Distributed Lag Non-linear Models
Resumo:
We use a computational homogenisation approach to derive a non linear constitutive model for lattice materials. A representative volume element (RVE) of the lattice is modelled by means of discrete structural elements, and macroscopic stress-strain relationships are numerically evaluated after applying appropriate periodic boundary conditions to the RVE. The influence of the choice of the RVE on the predictions of the model is discussed. The model has been used for the analysis of the hexagonal and the triangulated lattices subjected to large strains. The fidelity of the model has been demonstrated by analysing a plate with a central hole under prescribed in plane compressive and tensile loads, and then comparing the results from the discrete and the homogenised models. © 2013 Elsevier Ltd.
Resumo:
The goal of this work is to learn a parsimonious and informative representation for high-dimensional time series. Conceptually, this comprises two distinct yet tightly coupled tasks: learning a low-dimensional manifold and modeling the dynamical process. These two tasks have a complementary relationship as the temporal constraints provide valuable neighborhood information for dimensionality reduction and conversely, the low-dimensional space allows dynamics to be learnt efficiently. Solving these two tasks simultaneously allows important information to be exchanged mutually. If nonlinear models are required to capture the rich complexity of time series, then the learning problem becomes harder as the nonlinearities in both tasks are coupled. The proposed solution approximates the nonlinear manifold and dynamics using piecewise linear models. The interactions among the linear models are captured in a graphical model. The model structure setup and parameter learning are done using a variational Bayesian approach, which enables automatic Bayesian model structure selection, hence solving the problem of over-fitting. By exploiting the model structure, efficient inference and learning algorithms are obtained without oversimplifying the model of the underlying dynamical process. Evaluation of the proposed framework with competing approaches is conducted in three sets of experiments: dimensionality reduction and reconstruction using synthetic time series, video synthesis using a dynamic texture database, and human motion synthesis, classification and tracking on a benchmark data set. In all experiments, the proposed approach provides superior performance.
Resumo:
The origin of the tri-phasic burst pattern, observed in the EMGs of opponent muscles during rapid self-terminated movements, has been controversial. Here we show by computer simulation that the pattern emerges from interactions between a central neural trajectory controller (VITE circuit) and a peripheral neuromuscularforce controller (FLETE circuit). Both neural models have been derived from simple functional constraints that have led to principled explanations of a wide variety of behavioral and neurobiological data, including, as shown here, the generation of tri-phasic bursts.
Resumo:
We describe a strategy for Markov chain Monte Carlo analysis of non-linear, non-Gaussian state-space models involving batch analysis for inference on dynamic, latent state variables and fixed model parameters. The key innovation is a Metropolis-Hastings method for the time series of state variables based on sequential approximation of filtering and smoothing densities using normal mixtures. These mixtures are propagated through the non-linearities using an accurate, local mixture approximation method, and we use a regenerating procedure to deal with potential degeneracy of mixture components. This provides accurate, direct approximations to sequential filtering and retrospective smoothing distributions, and hence a useful construction of global Metropolis proposal distributions for simulation of posteriors for the set of states. This analysis is embedded within a Gibbs sampler to include uncertain fixed parameters. We give an example motivated by an application in systems biology. Supplemental materials provide an example based on a stochastic volatility model as well as MATLAB code.
Resumo:
Este documento estima modelos lineales y no-lineales de corrección de errores para los precios spot de cuatro tipos de café. En concordancia con las leyes económicas, se encuentra evidencia que cuando los precios están por encima de su nivel de equilibrio, retornan a éste mas lentamente que cuando están por debajo. Esto puede reflejar el hecho que, en el corto plazo, para los países productores de café es mas fácil restringir la oferta para incrementar precios, que incrementarla para reducirlos. Además, se encuentra evidencia que el ajuste es más rápido cuando las desviaciones del equilibrio son mayores. Los pronósticos que se obtienen a partir de los modelos de corrección de errores no lineales y asimétricos considerados en el trabajo, ofrecen una leve mejoría cuando se comparan con los pronósticos que resultan de un modelo de paseo aleatorio.
Resumo:
A nonlinear regression structure comprising a wavelet network and a linear term is proposed for system identification. The theoretical foundation of the approach is laid by proving that radial wavelets are orthogonal to linear functions. A constructive procedure for building such models is described and the approach is tested with experimental data.