954 resultados para Distortions
Resumo:
According to semiempirical calculations the planarizing distortions in the central C(C)4 substructure of fenestranes, represented as 1, can be enhanced by a variety of structural modifications. Based on these results we selected the 7-hydroxy-c,c,c,c- and c,t,c,c[4.5.5.5]fenestranones 13 and 16 as precursors for the introduction of a bridgehead double bond. The efficient synthesis of these precursors and their chemical transformations are reported. Attempts to activate the hydroxyl group in 16 for introduction of a bridgehead double bond led to the rearrangement of the [4.5.5.5]fenestrane to a triquinacane skeleton. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
On the basis of the experiments carried out over various years, it was concluded that (1) grayling Thymallus thymallus and brown trout Salmo trutta are resistant to temperature-induced sex reversal at ecologically relevant temperatures, (2) environmental sex reversal is unlikely to cause the persistent sex ratio distortion observed in at least one of the study populations and (3) sex-specific tolerance of temperature-related stress may be the cause of distorted sex ratios in populations of T. thymallus or S. trutta.
Resumo:
We propose an intrinsic spin scattering mechanism in graphene originated by the interplay of atomic spin-orbit interaction and the local curvature induced by flexural distortions of the atomic lattice. Starting from a multiorbital tight-binding Hamiltonian with spin-orbit coupling considered non-perturbatively, we derive an effective Hamiltonian for the spin scattering of the Dirac electrons due to flexural distortions. We compute the spin lifetime due to both flexural phonons and ripples and we find values in the 1-10 ns range at room temperature. The proposed mechanism dominates the spin relaxation in high mobility graphene samples and should also apply to other planar aromatic compounds.
Resumo:
We propose an intrinsic spin scattering mechanism in graphene originated by the interplay of atomic spin-orbit interaction and the local curvature induced by flexural distortions of the atomic lattice. Starting from a multiorbital tight-binding Hamiltonian with spin-orbit coupling considered nonperturbatively, we derive an effective Hamiltonian for the spin scattering of the Dirac electrons due to flexural distortions. We compute the spin lifetime due to both flexural phonons and ripples and we find values in the microsecond range at room temperature. Interestingly, this mechanism is anisotropic on two counts. First, the relaxation rate is different for off-plane and in-plane spin quantization axis. Second, the spin relaxation rate depends on the angle formed by the crystal momentum with the carbon-carbon bond. In addition, the spin lifetime is also valley dependent. The proposed mechanism sets an upper limit for spin lifetimes in graphene and will be relevant when samples of high quality can be fabricated free of extrinsic sources of spin relaxation.
Resumo:
Do relative concerns on visible consumption give rise to economic distortions? We re-examine the question posited by Arrow and Dasgupta (2009) building upon their general framework but recognizing that relative concerns can only apply to visible goods (e.g., cars, clothing, jewelry) and that households consume both visible and non-visible goods. Contrary to Arrow and Dasgupta (2009), the answer to this question turns to be always affirmative: the competitive equilibrium will always be different than the socially optimal one, since individuals do not take into account the negative externality they exert on others through the consumption of the visible good, while the social planner does. If one invokes separability assumptions, then the steady state competitive equilibrium consumption of non-visible goods will be strictly lower than the socially optimal one.
Resumo:
On the basis of HF/6-31G(d) optimized structures, the nonplanar distortions of 135 polycyclic aromatic hydrocarbons (PAHs) have been classified as splitting (S-) and arching (A-) distortions. Three bay structures are proposed as the structural origin of S-distortion. Due to the limitation of sample molecules, a set of universal motifs for molecules containing A-distortions is not available; however, a set of motifs and parameters are developed for the semiquantitative estimation of the nonplanar strain energies of PAHs containing the corannulene structure, and the differences between the E, values from quantum calculations and those from these estimations vary from -5.60 to 5.51 kcal/mol. The above results are fundamentally important for the understanding of nonplanar distortion of PAHs and fullerenes, and this method can also be employed to semiquantitatively estimate strain energies of such molecules containing hundreds of carbon atoms.
Resumo:
A fundamental question about the perception of time is whether the neural mechanisms underlying temporal judgements are universal and centralized in the brain or modality specific and distributed []. Time perception has traditionally been thought to be entirely dissociated from spatial vision. Here we show that the apparent duration of a dynamic stimulus can be manipulated in a local region of visual space by adapting to oscillatory motion or flicker. This implicates spatially localized temporal mechanisms in duration perception. We do not see concomitant changes in the time of onset or offset of the test patterns, demonstrating a direct local effect on duration perception rather than an indirect effect on the time course of neural processing. The effects of adaptation on duration perception can also be dissociated from motion or flicker perception per se. Although 20 Hz adaptation reduces both the apparent temporal frequency and duration of a 10 Hz test stimulus, 5 Hz adaptation increases apparent temporal frequency but has little effect on duration perception. We conclude that there is a peripheral, spatially localized, essentially visual component involved in sensing the duration of visual events.
Resumo:
Spectral CT using a photon counting x-ray detector (PCXD) shows great potential for measuring material composition based on energy dependent x-ray attenuation. Spectral CT is especially suited for imaging with K-edge contrast agents to address the otherwise limited contrast in soft tissues. We have developed a micro-CT system based on a PCXD. This system enables full spectrum CT in which the energy thresholds of the PCXD are swept to sample the full energy spectrum for each detector element and projection angle. Measurements provided by the PCXD, however, are distorted due to undesirable physical eects in the detector and are very noisy due to photon starvation. In this work, we proposed two methods based on machine learning to address the spectral distortion issue and to improve the material decomposition. This rst approach is to model distortions using an articial neural network (ANN) and compensate for the distortion in a statistical reconstruction. The second approach is to directly correct for the distortion in the projections. Both technique can be done as a calibration process where the neural network can be trained using 3D printed phantoms data to learn the distortion model or the correction model of the spectral distortion. This replaces the need for synchrotron measurements required in conventional technique to derive the distortion model parametrically which could be costly and time consuming. The results demonstrate experimental feasibility and potential advantages of ANN-based distortion modeling and correction for more accurate K-edge imaging with a PCXD. Given the computational eciency with which the ANN can be applied to projection data, the proposed scheme can be readily integrated into existing CT reconstruction pipelines.
Resumo:
Purpose: In the present work we consider our (in progress) spectroscopy study of zinc and iron phosphates under the influence external high pressure to determine zinc ion change coordination from tetrahedral to octahedral (or hexahedral) structure.----- Design/methodology/approach: The standard equipment is the optical high pressure cell with diamond (DAC). The DAC is assembled and then vibrational or electronic spectra are collected by mounting the cell in an infrared, Raman, EXAFS or UV-visible spectrometer.----- Findings: Mechanism by which zinc and iron methaphosphate material is transformed to glassy meta-phosphate is enhancing mechanical properties of tribofilm. The two decades of intensive study demonstrates that Zn (II) and Fe (III) ions participate to cross-link network under friction, hardening the phosphate.----- Research limitations/implications: Transition metal atoms with d orbital have flexible coordination numbers, for example zinc acts as a cross-linking agent increasing hardness, by changing coordination from tetrahedral to octahedral. Perhaps the external pressure effect on the [Zn–(O-P-)4 ] complex causes a transformation to an [Zn –(O-P-)6] grouping.----- Originality/value: This paper analyses high-pressure spectroscopy which has been applied for the investigation of 3D transition metal ions in solids. When studying pressure effects on coordination compounds structure, we can expect changes in ground electronic state (spin-crossovers), electronic spectra due to structural distortions (piezochromism), and changes in the ligand field causing shifts in the electronic transitions.